

MIPS32[®] 24KEf[™] Processor Core Datasheet

The MIPS32® 24KEfTM core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is designed for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripherals with a high-performance RISC processor. Fully synthesizable and highly portable across processes, it can be easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user products.

The 24KEf core implements the MIPS32 Release 2 Architecture in an 8-stage pipeline. It includes support for the MIPS16eTM application specific extension and the 32-bit privileged resource architecture. This standard architecture allows support by a wide range of industry standard tools and development systems.

The 24KEf core incorporates the DSP Application Specific Extension (ASE), providing support for a number of powerful data processing operations. There are instructions for executing fractional arithmetic (Q15/Q31) and for saturating arithmetic. Additionally, for smaller data sizes, SIMD operations are supported, allowing 2x16b or 4x8b operations to occur simultaneously. Another feature of the ASE is the inclusion of additional HI/LO accumulator registers to improve the parallelization of independent accumulation routines.

To maintain high pipeline utilization, dynamic branch prediction is included in the form of a Branch History Table and a Return Prediction Stack. The Memory Management Unit (MMU) contains 4-entry instruction and 8-entry data Translation Lookaside Buffers (ITLB/DTLB) and a configurable 16/32/64 dual-entry joint TLB (JTLB) with variable page sizes. Alternatively, for applications not requiring address mapping or protection, the TLBs can be replaced with a simple Fixed Mapping mechanism.

The 24KEf core also features an IEEE 754 compliant Floating Point Unit (FPU). The FPU supports both single and double precision instructions.

The synthesizable 24KEf core includes a high performance Multiply/Divide Unit (MDU). The MDU is fully pipelined to support a single cycle repeat rate for 32x32 MAC instructions, which enables multiply-intensive algorithms to be performed efficiently. Further, in the 24KEf Pro[™] Core, the optional CorExtend block can utilize the HI/LO registers in the MDU block. The CorExtend block allows specialized functions to be efficiently implemented.

Instruction and data level-one caches are configurable at 0, 8, 16, 32, or 64 KB in size. Each cache is organized as 4-way set associative. Data cache misses are non-blocking and up to 4 may be outstanding. Two instruction cache misses can be outstanding. Both caches are virtually indexed and physically tagged to allow them to be accessed in the same cycle that the address is translated. To achieve high frequencies while using commercially available SRAM generators, the cache access is spread across two pipeline stages, leaving nearly an entire cycle for the SRAM access.

The Bus Interface Unit implements the Open Core Protocol (OCP) which has been developed to address the needs of SOC designers. This implementation features 64-bit read and write data buses to efficiently transfer data to and from the L1 caches. The BIU also supports a variety of core/bus clock ratios to give greater flexibility for system design implementations.

Optional interfaces are supported to external scratchpad or coprocessor blocks.

An Enhanced JTAG (EJTAG) version 3.10 compliant block allows for software debugging of the processor and includes a TAP controller as well as optional instruction and data virtual address/value breakpoints. Additionally, real-time tracing of instruction program counter, data address and data values can be supported.

Figure 1 shows a block diagram of the 24KEf core.

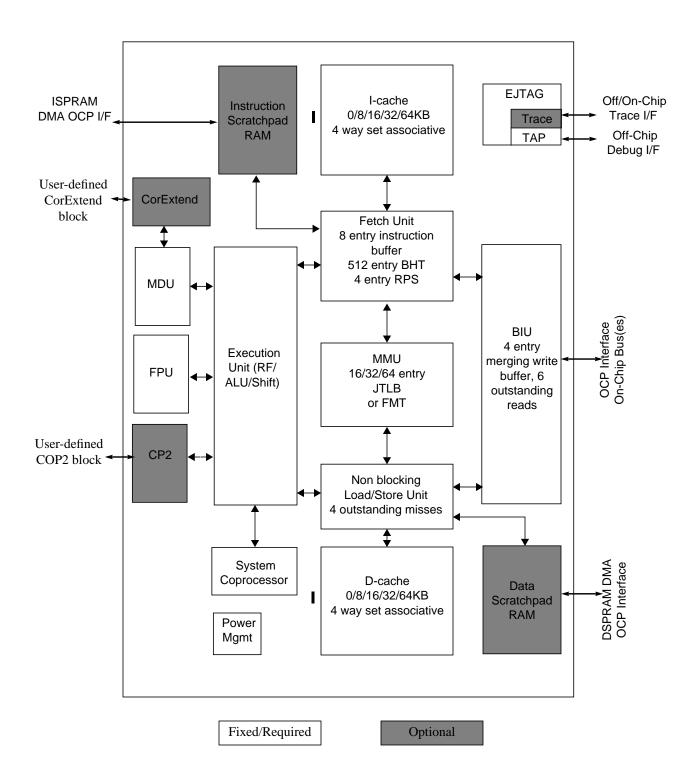


Figure 1 24KEfTM Core Block Diagram

24KEfTM Core Features

- 8-stage pipeline
- 32-bit address paths
- 64-bit data paths to caches and external interface
- MIPS32-Compatible Instruction Set
 - Multiply-Accumulate and Multiply-Subtract Instructions (MADD, MADDU, MSUB, MSUBU)
 - Targeted Multiply Instruction (MUL)
 - Zero/One Detect Instructions (CLZ, CLO)
 - Wait Instruction (WAIT)
 - Conditional Move Instructions (MOVZ, MOVN)
 - Prefetch Instruction (PREF)
- MIPS32 Enhanced Architecture (Release 2) Features
 - Vectored interrupts and support for external interrupt controller
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers (optionally, one or three additional shadows can be added to minimize latency for interrupt handlers)
 - Bit field manipulation instructions
- MIPS32 Privileged Resource Architecture
- MIPS DSP ASE
 - Fractional data types (Q15, Q31)
 - Saturating arithmetic
 - SIMD instructions operate on 2x16b or 4x8b simultaneously
 - 3 additional pairs of accumulator registers
- Programmable Memory Management Unit
 - 16/32/64 dual-entry JTLB with variable page sizes
 - 4-entry ITLB
 - 8-entry DTLB
 - Optional simple Fixed Mapping Translation (FMT) mechanism
- MIPS16e[™] Code Compression
 - 16 bit encodings of 32 bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE & RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16 bit datatypes
- Programmable L1 Cache Sizes
 - Individually configurable instruction and data caches
 - Instruction and Data cache sizes of 0/8/16/32/64 KB
 - 4-Way Set Associative

I

- Up to 4 outstanding load misses
- Write-back and write-through support
- 32-byte cache line size

- Virtually indexed, physically tagged
- Cache line locking support
- Non-blocking prefetches
- Optional parity support
- Bus Interface
 - OCP 2.1 compliant
 - OCP interface with 32-bit address and 64-bit data
 - OCP interface runs at core/bus clock ratios of 1, 1.5, 2, 2.5, 3, 3.5, 4 or 5 via a separate synchronous bus clock
 - Handshaked interface to allow core/bus clock ratio to change without resetting the system
 - Burst size of four 64-bit beats
 - 4 entry write buffer
 - "Simple" byte enable mode allows easier bridging to other bus standards
 - Extensions for front-side L2 cache
- Scratchpad RAM support
 - Independent Instruction and Data Scratchpad RAM
 - Independent of cache configuration
 - Independent 64 bit OCP interface for external DMA
 - External interface runs at the same core/bus clock ratio as that of BIU interface
 - Maximum size of 1MB each
 - Interface allows back-stalling the core
- Multiply/Divide Unit
 - Maximum issue rate of one 32x32 multiply per clock
 - 5 cycle multiply latency
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (*rs*) sign extension-dependent)
- CorExtendTM User Defined Instruction Set Extensions (available in 24KEf ProTM core)
 - Allows user to define and add instructions to the core at build time
 - Maintains full MIPS32 compatibility
 - Supported by industry standard development tools
 - Single or multi-cycle instructions
 - Separately licensed; a core with this feature is known as the 24KEf ProTM core
 - Implemented in same block as MDU, allows all HI and LO registers to be shared for MIPS32 and CorExtend multiply operations.
- Floating Point Unit (FPU)
 - IEEE-754 compliant Floating Point Unit
 - Compliant to MIPS 64b FPU standards
 - Supports single and double precision datatypes
 - Optionally run at 1:1 or 2:1 core/FPU clock ratio
- Coprocessor 2 interface
 - 64 bit interface to a user designed coprocessor
- Power Control
 - Minimum frequency: 0 MHz

- Power-down mode (triggered by WAIT instruction)
- Support for software-controlled clock divider
- Support for extensive use of local gated clocks
- EJTAG Debug
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - TAP controller is chainable for multi-CPU debug
 - Cross-CPU breakpoint support
 - EJTAG version 3.10 compliant
- MIPS Trace
 - PC, data address and data value tracing w/ trace compression
 - Support for on-chip and off-chip trace memory
 - PDTrace version 4.1 compliant
- Testability
 - Full scan design achieves test coverage in excess of 99% (dependent on library and configuration options)
 - Optional memory BIST for internal SRAM arrays

Architecture Overview

The 24KEf core contains a variety of blocks some of which are always present, while others are optional.

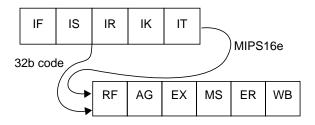
The required blocks are as follows:

- Fetch Unit
- Execution Unit
- MIPS16e recode
- System Control Coprocessor (CP0)
- Memory Management Unit (MMU)
- Cache Controllers
- Bus Interface Unit (BIU)
- · Power Management
- Instruction Cache
- Floating Point Unit

Optional blocks include:

- CorExtend[™] User Defined Instruction (UDI) support
- Enhanced JTAG (EJTAG) breakpoints
- MIPS Trace (PDTrace) support
- Instruction/Data cache
- Instruction/Data scratchpad
- COP2 interface

Pipeline Flow


The 24KEf core implements an 8-stage pipeline. Three extra fetch stages are conditionally added when executing MIPS16e instructions. This pipeline allows the processor to achieve a high frequency while maintaining reasonable area and power numbers.

The 24KEf core pipeline consists of the following stages:

- IF Instruction Fetch First
- IS Instruction Fetch Second
- IR Instruction Recode (MIPS16e only)
- IK Instruction Kill (MIPS16e only)
- IT Instruction Fetch Third (MIPS16e only)
- RF Register File access
- AG Address Generation
- EX Execute
- MS Memory Second
- ER Exception Resolution
- WB WriteBack

The 24KEf core implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the register and then read it back.

Figure 2 shows a diagram of the 24KEf core pipeline.

Figure 2 24KEfTM Core Pipeline

IF Stage: Instruction Fetch First

- · I-cache tag/data arrays accessed
- Branch History Table accessed
- ITLB address translation performed
- · Instruction watch and EJTAG break compares done

IS - Instruction Fetch Second

- Detect I-cache hit
- Way select
- MIPS32 Branch prediction

IR - Instruction Recode

- MIPS16e instruction recode
- MIPS16e branch prediction

IK - Instruction Kill

• MIPS16e instruction kill

IT - Instruction Fetch Third

- Instruction Buffer
- Branch target calculation

RF - Register File Access

- Register File access
- Instruction decoding/dispatch logic
- · Bypass muxes

AG - Address Generation

- D-cache Address Generation
- Bypass muxes

EX - Execute/Memory Access

- Skewed ALU
- DTLB
- Start DCache access
- Branch Resolution
- Data watch and EJTAG break address compares

MS - Memory Access Second

- Complete DCache access
- DCache hit detection
- Way select mux
- Load align
- EJTAG break data value compare

ER-Exception Resolution

- Instruction completion
- Register file write setup
- Exception processing

WB - Writeback

• Register file writeback occurs on rising edge of this cycle

24KEfTM Core Logic Blocks

The 24KEf core consists of the following logic blocks, shown in Figure 1. These logic blocks are defined in the following subsections:

- Fetch Unit
- Execution Unit
- Floating Point Unit (FPU) / Coprocessor 1
- MIPS16e support
- System Control Coprocessor (CP0)
- Memory Management Unit (MMU)
- Cache Controller
- Bus Interface Unit (BIU)
- Power Management

Fetch Unit

The 24KEf core fetch unit is responsible for fetching instructions and providing them to the rest of the pipeline, as well as handling control transfer instructions (branches, jumps, etc.). It calculates the address for each instruction fetch and contains an instruction buffer that decouples the fetching of instructions from their execution.

The fetch unit contains two structures for the dynamic prediction of control transfer instructions. A 512-entry Branch History Table (BHT) is used to predict the direction of branch instructions. It uses a bimodal algorithm with two bits of history information per entry. Also, a 4-entry Return Prediction Stack (RPS) is a simple structure to hold the return address from the most recent subroutine calls. The link address is pushed onto the stack whenever a JAL, JALR, or BGEZAL instruction is seen. Then that address is popped when a JR instruction occurs.

Execution Unit

The 24KEf core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The 24KEf core contains thirty-two 32-bit general-purpose registers used for integer operations and address calculation. Optionally, one or three additional register file

shadow sets (each containing thirty-two registers) can be added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Logic for verifying branch prediction
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instructions streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter & Store Aligner

The execution unit also includes the following DSP ASE operations for various data types:

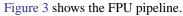
- two-cycle add, sub, absolute, shift, compare
- two-cycle compare, byte manipulation, precision control

Floating Point Unit (FPU) / Coprocessor 1

The 24KEf core Floating Point Unit (FPU) implements the MIPS64 ISA (Instruction Set Architecture) for floatingpoint computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE Standard for Binary Floating-Point Arithmetic) for single and double precision data formats. The FPU contains thirty-two 64-bit floating-point registers used for floating point operations.

The FPU can be configured at build time to run at either the same or one-half the clock rate of the integer core. The FPU is not as deeply pipelined as the integer core so the maximum core frequency will only be attained with the FPU running at one-half the core frequency. The FPU is connected via an internal 64-bit coprocessor interface. Note that clock cycles related to floating point operations are listed in terms of FPU clocks, not integer core clocks. The performance is optimized for single precision formats. Most instructions have one FPU cycle throughput and four FPU cycle latency. The FPU implements the MIPS64 multiply-add (MADD) and multiply-sub (MSUB) instructions with intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register accesses are improved.

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance. The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best performance when denormalized results are generated.


The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations, such as divide or square root, to be partially masked by system stalls and/or other integer unit instructions. Arithmetic instructions are always dispatched and completed in order, but loads and stores can complete out of order. The exception model is 'precise' at all times. The FPU is also denoted as "Coprocessor 1".

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

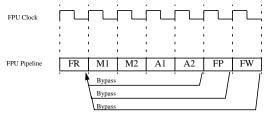


Figure 3 FPU Pipeline

FPU Instruction Latencies and Repeat Rates

Table 1 contains the floating point instruction latencies and repeat rates for the 24KEf core. In this table 'Latency' refers to the number of FPU cycles necessary for the first instruction to produce the result needed by the second instruction. The 'Repeat Rate' refers to the maximum rate at which an instruction can be executed per FPU cycle

Table 1	24KEf [™] Core FPU Latency and Repeat Rate
ruore r	2 Inchi Cole I I C Euteney und Repeut Rute

Opcode*	Latency (FPU cycles)	Repeat Rate (FPU cycles)
ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], C.cond.[S,D], MUL.S	4	1
MADD.S, MSUB.S, NMADD.S, NMSUB.S, CABS.cond.[S,D]	4	1
CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L]	4	1
CVT.S.D, CVT.[W,L].[S,D], CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]	4	1
MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D]	4	1
MUL.D	5	2
MADD.D, MSUB.D, NMADD.D, NMSUB.D	5	2
RECIP.S	13	10
RECIP.D	26	21
RSQRT.S	17	14
RSQRT.D	36	31
* Format: S = Single, D = Double, W = Word, L = Longword		

Table 1 24KEf TM Core FPU Latency and Repeat Ra
--

Opcode*	Latency (FPU cycles)	Repeat Rate (FPU cycles)
DIV.S, SQRT.S	17	14
DIV.D, SQRT.D	32	29
MTC1, DMTC1, LWC1, LDC1, LDXC1, LUXC1, LWXC1	4	1
MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1		
* Format: S = Single, D = Double, W = Word, L = Longword		

FPU Control Registers

The FPU contains a number of control registers, listed in Table 2

Table 2	Coprocessor 1	Registers in Numer	ical Order
Table 2	Coprocessor i	Registers in Numer	Ical Oluci

Register Number	Register Name	Function
0	FIR	Floating Point Implementation Register. Identifies the capabilities of the floating point unit.
25	FCCR	Floating Point Condition Codes Register. Alternate way of reading the FP condition codes in the FCSR.
26	FEXR	Floating Point Exceptions Register. Alternate way of reading the exception condition codes in the FCSR.
28	FENR	Floating Point Enables Register. Alternate way of reading the Enables field in the FCSR.
31	FCSR	Floating Point Control and Status Register.

MIPS16eTM Application Specific Extension

The 24KEf core includes support for the MIPS16e ASE. This ASE improves code density through the use of 16-bit encoding of many MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick access to constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for efficient subroutine entry/exit.

Multiply/Divide Unit (MDU)

The 24KEf core includes a multiply/divide unit (MDU) that contains a separate pipeline for integer multiply and divide operations. This pipeline operates in parallel with the integer unit pipeline and does not stall when the integer pipeline stalls. This allows any long-running MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The MDU consists of a pipelined 32x32 multiplier, result/ accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic.

The MDU supports execution of one multiply or multiply accumulate operation every clock cycle.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit-wide rs, 15 iterations are skipped, and for a 24-bit-wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes a pipeline stall until the divide operation is completed.

Table 3 lists the latencies (number of cycles until a result is available) and repeat rates (peak issue rate of cycles until the operation can be reissued) for the 24KEf core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks. For a more detailed discussion of latencies and repeat rates, refer to Chapter 2 of the *MIPS32 24KE Processor Core Family Software User's Manual*.

Table 3 24KEfTM Core Integer Multiply/Divide Unit Latencies and Repeat Rates

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU, MSUB/MSUBU	32 bits	5	1
MUL	32 bits	5	1^{1}
	8 bits	12/14	12/14
DIV/DIVU	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

1.If there is no data dependency, a MUL can be issued every cycle.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the general-purpose register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair.

Two other instructions, multiply-add (MADD) and multiply-subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as defined in the DSP ASE. It supports all the data types required for this purpose and includes three extra HI/LO registers as defined by the ASE. The MDU also allows the CorExtend interface to access these HI/LO registers (24KEf ProTM core only).

Table 4 lists the latencies and repeat rates for the DSP multiply and dot-product operations. The approximate latencies and repeat rates are listed in terms of pipeline clocks. For a more detailed discussion of latencies and repeat rates, refer to the *MIPS32 24KEf Processor Core Family Software User's Manual*.

Opcode	Latency	Repeat Rate
Multiply and dot-product without saturation after accumulation	5	1
Multiply and dot-product with saturation after accumulation	5	2
Multiply without accumulation	5	1

Table 4 24KEf[™] Core DSP-related Latencies and Repeat Rates

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtualto-physical address translation and cache protocols, the exception control system, the processor's diagnostic capability, the operating modes (kernel, user, supervisor, and debug), and whether interrupts are enabled or disabled. Configuration information, such as cache size and associativity, presence of features like MIPS16e or floating point unit, is also available by accessing the CP0 registers, listed in Table 5.

Register Number	Register Name	Function
0	Index ³	Index into the TLB array.
1	Random ³	Randomly generated index into the TLB array.
2	EntryLo0 ³	Low-order portion of the TLB entry for even-numbered virtual pages.
3	EntryLo1 ³	Low-order portion of the TLB entry for odd-numbered virtual pages.
4	Context ¹	Pointer to page table entry in memory.
5	PageMask ³	Control for variable page sizes in TLB entries.
6	Wired ³	Controls the number of fixed ("wired") TLB entries.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ¹	Reports the address for the most recent address-related exception.
9	Count ¹	Processor cycle count.
10	EntryHi ³	High-order portion of the TLB entry.
11	Compare ¹	Timer interrupt control.
12	Status ¹	Processor status and control.
12	IntCtl ¹	Interrupt system status and control.
12	SRSCtl ¹	Shadow register set status and control.

Table 5	Coprocessor	0 Registers	in Numerical Order
---------	-------------	-------------	--------------------

Register Number	Register Name	Function
12	SRSMap ¹	Provides mapping from vectored interrupt to a shadow set.
13	Cause ¹	Cause of last general exception.
14	EPC ¹	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration register 1.
16	Config2	Configuration register 2.
16	Config3	Configuration register 3.
16	Config7	Configuration register 7.
17	Reserved	Reserved in the 24KEf core.
18	WatchLo ¹	Low-order watchpoint address.
19	WatchHi ¹	High-order watchpoint address.
20-22	Reserved	Reserved in the 24KEf core.
23	Debug ²	Debug control and exception status.
23	Trace Control ²	PC/Data trace control register.
23	Trace Control2 ²	Additional PC/Data trace control.
23	User Trace Data ²	User Trace control register.
23	TraceBPC ²	Trace breakpoint control.
24	DEPC ²	Program counter at last debug exception.
25	PerfCount	Performance counters and associated control.
26	ErrCtl	Used for software testing of cache arrays.
27	CacheErr	Cache parity error interface.
28	TagLo/ DataLo	Low-order portion of cache tag interface.
29	DataHi	Hi-order portion of cache tag interface.

Register Number	Register Name	Function
30	ErrorEPC ¹	Program counter at last error.
31	DESAVE ²	Debug handler scratchpad register.
 Registers used in exception processing. Registers used during debug. Registers used in memory management. 		

Table 5 Coprocessor 0 Registers in Numerical Order

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events, or program errors. Table 6 shows the exception types in order of priority.

Exception	Description	
Reset	Assertion of <i>SI_Reset</i> signal.	
DSS	EJTAG Debug Single Step.	
DINT	EJTAG Debug Interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input, or by setting the EjtagBrk bit in the ECR register.	
DDBLImpr/ DDBSImpr	Debug Data Break Load/Store Imprecise	
NMI	Assertion of SI_NMI signal.	
Interrupt	Assertion of unmasked hardware or software interrupt signal.	
Deferred Watch	Deferred Watch (unmasked by K DM->!(K DM) transition).	
DIB	EJTAG debug hardware instruction break matched.	
WATCH	A reference to an address in one of the watch registers (fetch).	
AdEL	Fetch address alignment error. Fetch reference to protected address.	
TLBL	Fetch TLB miss.	
TLBL	Fetch TLB hit to page with V=0.	
I Cache Error	Instruction cache parity error	
IBE	Instruction fetch bus error.	

Table 624KEfTM Core Exception Types

Table 6 24KEfTM Core Exception Types (Continued)

Exception	Description
DBp	EJTAG Breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
DSPDis	DSP ASE State Disabled.
RI	Execution of a Reserved Instruction.
FPE	Floating Point Exception
C2E	Coprocessor2 Exception
IS1	Implementation specific Coprocessor2 exception
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
Machine Check	TLB write that conflicts with an existing entry.
DDBL / DDBS	EJTAG Data Address Break (address only).
WATCH	A reference to an address in one of the watch registers (data).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
TLBL	Load TLB miss.
TLBL	Load TLB hit to page with V=0.
TLBS	Store TLB miss.
TLBS	Store TLB hit to page with V=0.
TLB Mod	Store to TLB page with D=0.
D Cache Error	Data cache parity error - imprecise
DBE	Load or store bus error - imprecise

Interrupt Handling

The 24KEf core includes support for six hardware interrupt pins, two software interrupts, a timer interrupt, and a performance counter interrupt. These interrupts can be used in any of three interrupt modes, as defined by Release 2 of the MIPS32 Architecture:

- Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architecture.
- Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is denoted by the VInt bit in the *Config3* register. This mode is architecturally optional; but it is always present on the 24KEf core, so the VInt bit will always read as a 1 for the 24KEf core.
- External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of this mode denoted by the VEIC bit in the *Config3* register. Again, this mode is architecturally optional. On the 24KEf core, the VEIC bit is set externally by the static input, *SI_EICPresent*, to allow system logic to indicate the presence of an external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2 of the Architecture, like the 24KEf core, is fully compatible with implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the optional shadow registers to specify which shadow set should be used upon entry to a particular vector. The shadow registers further improve interrupt latency by avoiding the need to save context when invoking an interrupt handler.

GPR Shadow Registers

Release 2 of the MIPS32 Architecture optionally removes the need to save and restore GPRs on entry to high priority interrupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing multiple copies of the GPRs, called *shadow sets*, and allowing privileged software to associate a shadow set with entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero. The number of GPR shadow sets is a build-time option on the 24KEf core. Although Release 2 of the Architecture defines a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, or four shadow sets. The highest number actually implemented is indicated by the SRSCtl_{HSS} field. If this field is zero, only the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode. The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the *SRSCtl* register provides the number of the current shadow register set, and the PSS field of the *SRSCtl* register provides the number of the previous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to the *SRSMap* register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the *SRSCtl* register. When an exception or interrupt occurs, the value of SRSCtl_{CSS} is copied to SRSCtl_{PSS}, and SRSCtl_{CSS} is set to the value taken from the appropriate source. On an ERET, the value of SRSCtl_{PSS} is copied back into SRSCtl_{CSS} to restore the shadow set of the mode to which control returns.

Modes of Operation

The 24KEf core supports four modes of operation: user mode, supervisor mode, kernel mode, and debug mode. User mode is most often used for application programs. Supervisor mode gives an intermediate privilege level with access to the ksseg address space. Supervisor mode is not supported with the fixed mapping MMU. Kernel mode is typically used for handling exceptions and operating system kernel functions, including CP0 management and I/ O device accesses. An additional Debug mode is used during system bring-up and software development. Refer to "EJTAG Debug Support" on page 25 for more information on debug mode.

0xFFFFFFFF	[]	>
0,11111111	Mapped	
0xFF400000		
0xFF3FFFFF 0xFF200000	Memory/EJTAG ¹	≻kseg3
0xF1FFFFFF		1
	Mapped	
0xE0000000)
0xDFFFFFFF	Supervisor virtual address space Mapped, 512 MB	ksseg sseg
0xC0000000		33C9
0xBFFFFFFF	Kernel virtual address space	
	Unmapped, 512 MB	kseg1
0xA0000000	Uncached	
0x9FFFFFFF	Kernel virtual address space	
	Unmapped, 512 MB	kseg0
0x80000000		
0x7FFFFFFF		
	User virtual address space Mapped, 2048 MB	useg suseg kuseg
0x00000000		
1. This space is	s mapped to memory in kernel mode	

1. This space is mapped to memory in kernel mode, and by the EJTAG module in debug mode.

Figure 4 24KEfTM Core Virtual Address Map

Memory Management Unit (MMU)

The 24KEf core contains a configurable Memory Management Unit (MMU) that is primarily responsible for converting virtual addresses to physical addresses and providing attribute information for different segments of memory.

Two types of MMUs are possible on the 24KEf core, selectable when the core is synthesized. Software can identify the type of MMU present by querying the MT field of the *Config* register.

 Translation Lookaside Buffer (TLB) -style MMU. The basic TLB functionality is specified by the MIPS32 Privileged Resource Architecture (PRA). A TLB provides mapping and protection capability with per-page granularity. The 24KEf implementation allows a wide range of page sizes to be present simultaneously.

2. Fixed Mapping Translation (FMT) -style MMU. The FMT is much simpler and smaller than the TLB-style MMU, and is a good choice when the full protection and flexibility of the TLB is not needed.

Translation Lookaside Buffer (TLB)

The TLB consists of three address translation buffers:

- 16/32/64 dual-entry fully associative Joint TLB (JTLB)
- 4-entry fully associative Instruction Micro TLB (ITLB)
- 8-entry fully associative Data Micro TLB (DTLB)

When an instruction or data address is calculated, the virtual address is compared to the contents of the appropriate micro TLB (uTLB). If the address is not found in the ITLB or DTLB, the JTLB is accessed. If the entry is found in the JTLB, that entry is then written into the uTLB. If the address is not found in the JTLB, a TLB exception is taken.

Figure 5 shows how the ITLB, DTLB, and JTLB are implemented in the 24KEf core.

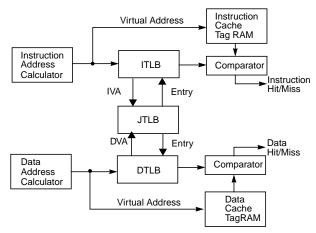


Figure 5 Address Translation During a Cache Access

Joint TLB (JTLB)

The 24KEf core implements a fully associative JTLB containing 16, 32, or 64-dual-entries mapping up to 128 virtual pages to their corresponding physical addresses. The purpose of the TLB is to translate virtual addresses and their corresponding ASIDs into a physical memory address. The translation is performed by comparing the upper bits of the virtual address (along with the ASID)

against each of the entries in the *tag* portion of the joint TLB structure.

The JTLB is organized as pairs of even and odd entries containing pages that range in size from 4 KB to 256 MB, in factors of four, into the 4 GB physical address space. The JTLB is organized in page pairs to minimize the overall size. Each *tag* entry corresponds to two data entries: an even page entry and an odd page entry. The highest order virtual address bit not participating in the tag comparison is used to determine which of the data entries is used. Since page size can vary on a page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make the even-odd determination is decided dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB dedicated to performing translations for the instruction stream. The ITLB only maps 4 KB or 1 MB pages/ subpages. For 4 KB or 1 MB pages, the entire page is mapped in the ITLB. If the main TLB page size is between 4 KB and 1 MB, only the current 4 KB subpage is mapped.

Similarly, for page sizes larger than 1 MB, the current 1 MB subpage is mapped.

The ITLB is managed by hardware and is transparent to software. The larger JTLB is used as a backing structure for the ITLB. If a fetch address cannot be translated by the ITLB, the JTLB is used to attempt to translate it in the following clock cycle, or when available. If successful, the translation information is copied into the ITLB for future use. There is a minimum two cycle ITLB miss penalty.

Data TLB (DTLB)

The DTLB is a small 8-entry, fully associative TLB dedicated to performing translations for loads and stores. Similar to the ITLB, the DTLB only maps either 4 KB or 1 MB pages/subpages.

The DTLB is managed by hardware and is transparent to software. The larger JTLB is used as a backing structure for the DTLB. If a load/store address cannot be translated by the DTLB, a lookup is done in the JTLB. If the JTLB translation is successful, the translation information is copied into the DTLB for future use. The DTLB miss penalty is also two cycles.

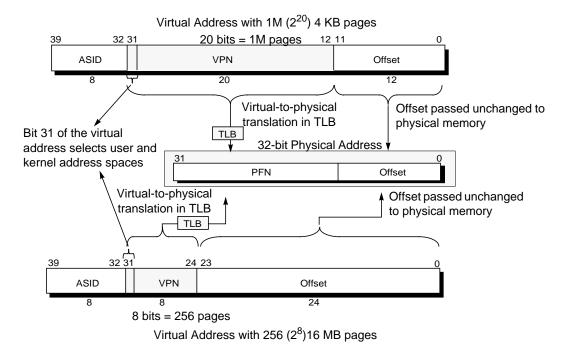


Figure 6 32-bit Virtual Address Translation

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with the virtual addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the same as the VPN field of the entry, and either:

- The Global (G) bit of the TLB entry is set, or
- The ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB *hit*. If there is no match, a TLB *miss* exception is taken by the processor and software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 6 shows a flow diagram of the address translation process for two different page sizes.

The top portion of Figure 6 shows a virtual address for a 4 KB page size. The width of the *Offset* in Figure 6 is defined by the page size. The remaining 20 bits of the address represent the virtual page number (*VPN*), and index the 1M-entry page table.

The bottom portion of Figure 6 shows the virtual address for a 16 MB page size. The remaining 8 bits of the address represent the VPN, and index the 256-entry page table.

In Figure 6, the virtual address is extended with an 8-bit address space identifier (ASID), which reduces the frequency of TLB flushes during context switches. This 8-bit ASID contains the number assigned to that process and is stored in the CP0 *EntryHi* register.

Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag portion and a data portion. If a match is found, the upper bits of the virtual address are replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the joint TLB (JTLB). The granularity of JTLB mappings is defined in terms of TLB *pages*. The 24KEf core's JTLB supports pages of different sizes ranging from 4 KB to 256 MB in factors of 4.

Table 7 shows the address bits used for even/odd bank selection depending on page size and the relationship between the legal values in the mask register and the selected page size.

Table 7	Mask and Page Size Values
---------	---------------------------

Pagemask[28:13]	Page Size	Even/Odd Bank Select Bit
00000000000000000	4KB	VAddr[12]
000000000000011	16KB	VAddr[14]
000000000001111	64KB	VAddr[16]
000000000111111	256KB	VAddr[18]
000000011111111	1MB	VAddr[20]
0000001111111111	4MB	VAddr[22]
0000111111111111	16MB	VAddr[24]
00111111111111111	64MB	VAddr[26]
111111111111111111	256MB	VAddr[28]

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in memory. Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry.

The 24KEf core implements a TLB write compare mechanism to ensure that multiple TLB matches do not occur. On the TLB write operation, the write value is compared with all other entries in the TLB. If a match occurs, the 24KEf core takes a machine check exception, sets the TS bit in the CP0 *Status* register, and aborts the write operation.

Compared with previous cores from MIPS Technologies, the 24KEf core uses a more relaxed check for multiple matches in order to avoid machine check exceptions while flushing or initializing the TLB. On a write, all matching entries are disabled to prevent them from matching on future compares. A machine check is only signaled if the entry being written has its valid bit set, the matching entry in the TLB has its valid bit set, and the matching entry is not the entry being written.

TLB Tag and Data Formats

Figure 7 shows the format of a TLB *tag* entry. The entry is divided into the follow fields:

- Global process indicator
- Address space identifier
- Virtual page number
- Compressed page mask

Setting the global process indicator (G bit) indicates that the entry is global to all processes and/or threads in the system. In this case, the 8-bit address space identifier (ASID) value is ignored since the entry is not relative to a specific thread or process.

The ASID field can help to reduce the frequency of TLB flushes on a context switches. The existence of the ASID allows multiple processes to exist in both the TLB and instruction caches. The current ASID value is stored in the *EntryHi* register and is compared to the ASID value of each entry. Figure 7 and Table 8 show the TLB tag entry format.

G	ASID[7:0]	VPN2[31:29]	VPN2[28:11]	CMASK[8:0]
1	8	3	18	9

Figure 7 TLB Tag Entry Format

Table 8 TLB Tag Entry Fields

Field Name	Description
G	Global Bit. When set, indicates that this entry is global to all processes and/or threads and thus disables inclusion of the ASID in the comparison.
ASID[7:0]	Address Space Identifier. Identifies with which process or thread this TLB entry is associated.
VPN2[31:29], VPN2[28:13]	Virtual Page Number divided by 2. This field contains the upper bits of the virtual page number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:29 are always included in the TLB lookup comparison. Bits 28:13 are included depending on the page size.
CMASK[8:0]	Compressed page mask value. This field is a compressed version of the page mask. It defines the page size by masking the appropriate VPN2 bits from being involved comparison. It is also used to determine which address bit is used to make the even- odd page determination.

Figure 8 and Table 9 show the TLB data array entry format.

PFN[31:12]	C[2:0]	D	V
20	3	1	1

Figure 8 TLB Data Array Entry Format

Table 9 TLB Data Array Entry Fields

Field Name	Description	
PFN[31:12]	Physical Frame Number. Defines the upper bits of the physical address. For page sizes larger than the 4KB, only a subset of these bits is actually used.	
	Cacheability. Contains an encoded value of the cacheability attributes and determines whether the page should be placed in the cache or not. The field is encoded as follows:	
	CS[2:0]	Coherency Attribute
	0	Cacheable, noncoherent, write through, no write allocate.
	1	Reserved
	2	Uncached
C[2:0]	3	Cacheable, noncoherent, write back, write allocate
	4-6	Reserved
	7	Uncached Accelerated
D	"Dirty" or write-enable bit. Indicates that the page has been written and/or is writable. If this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page cause a TLB Modified exception.	
V	Valid bit. Indicates that the TLB entry, and thus the virtual page mapping, are valid. If this bit is set, accesses to the page are permitted. If the bit is cleared, accesses to the page cause a TLB Invalid exception.	

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory regions, the 24KEf core provides two mechanisms. First, the page size can be configured, on a per-entry basis, to map a page size from 4 KB to 256 MB (in multiples of 4). The CP0 *PageMask* register is loaded with the mapping page size, which is then entered into the TLB when a new entry is written. Thus, operating systems can provide special purpose maps. For example, a typical frame buffer might be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be written with a new mapping, the 24KEf core provides a random replacement algorithm. However, the processor also provides a mechanism where a programmable number of mappings can be locked into the TLB via the CP0 *Wired* register, thus avoiding random replacement.

Fixed Mapping Translation (FMT)

The 24KEf core optionally provides a Fixed Mapping Translation mechanism that is smaller and simpler than the full Translation Lookaside Buffer (TLB). Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the different segments. Those segments that are unmapped in a TLB implementation (kseg0 and kseg1) are handled identically by the FMT.

Figure 9 shows how the FMT is implemented in the 24KEf core.

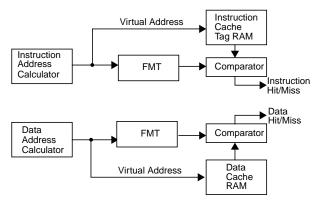


Figure 9 Address Translation During Access

In general, the FMT also determines the cacheability of each segment. These attributes are controlled via bits in the *Config* register. Table 10 shows the encoding for the K23 (bits 30:28), KU (bits 27:25), and K0 (bits 2:0) fields of the

Config register. Table 11 shows how the cacheability of the virtual address segments is controlled by these fields.

Table 10	Cache Coherency	Attributes
----------	-----------------	------------

Config Register Fields K23, KU, and K0	Cache Coherency Attribute
0	Cacheable, noncoherent, write- through, no write-allocate
1	Reserved
2	Uncached
3	Cacheable, noncoherent, write- back, write-allocate
4-6	Reserved
7	Uncached Accelerated

In a 24KEf core with FMT, no translation exceptions can be taken, although address errors are still possible.

 Table 11
 Virtual Address Segments

Segment	Virtual Address Range	Cacheability
useg kuseg	0x0000_0000- 0x7FFF_FFFF	Controlled by the KU field (bits 27:25) of the Config register. See Table 10 for mapping. This segment is always uncached when ERL = 1.
kseg0	0x8000_0000- 0x9FFF_FFFF	Controlled by the K0 field (bits 2:0) of the Config register. See Table 10 for mapping.
kseg1	0xA000_0000- 0xBFFF_FFFF	Always uncacheable.
kseg2	0xC000_0000- 0xDFFF_FFF	Controlled by the K23 field (bits 30:28) of the Config register. See Table 10 for mapping.
kseg3	0xE000_0000- 0xFFFF_FFFF	Controlled by the K23 field (bits 30:28) of the Config register. See Table 10 for mapping.

The FMT performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown in Figure 10.

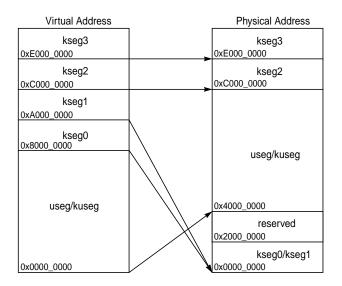


Figure 10 FMT Memory Map (ERL=0) in the $24KEf^{TM}$ Core

When ERL=1, useg and kuseg become unmapped (virtual address is identical to the physical address) and uncached. This behavior is the same as if there was a TLB. This mapping is shown in Figure 11.

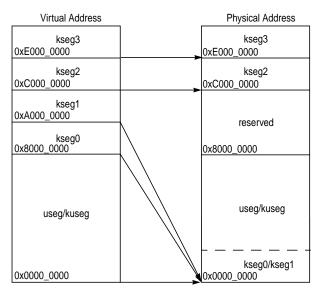


Figure 11 FMT Memory Map (ERL=1) in the 24KEfTM Core

Instruction Cache

The instruction cache is an on-chip memory block of 0/8/ 16/32/64 KB, with 4-way associativity. Because the instruction cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. A tag entry holds 20 bits of physical address, a valid bit, a lock bit, and an optional parity bit per way. The instruction data entry holds two instructions (64 bits) per way, as well as 6 bits of pre-decode information to speed the decode of branch and jump instructions, and 9 optional parity bits (one per data byte plus one more for the pre-decode information). The LRU replacement bits (6b) are stored in a separate array.

The instruction cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The instruction cache control logic controls the bypass function.

The 24KEf core supports instruction-cache locking. Cache locking allows critical code or data segments to be locked into the cache on a "per-line" basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache-locking function is always available on all instruction-cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

Data Cache

The data cache is an on-chip memory block of 0/8/16/32/ 64 KB, with 4-way associativity. Since the data cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. A tag entry holds 20 bits of physical address, a valid bit, a lock bit, and an optional parity bit per way. The data entry holds 64 bits of data per way, with optional parity per byte. There is an additional array holding dirty bits and LRU replacement algorithm bits (6b LRU, 4b dirty, and optionally 4b dirty parity).

Using 4KB pages in the TLB and 32 or 64KB cache sizes it is possible to get virtual aliasing. A single physical address can exist in multiple cache locations if it was accessed via different virtual addresses. For a 32KB data cache, there is an implementation option to eliminate virtual aliasing. If this option is not selected, or a 64KB cache is implemented, software must take care of any aliasing issues by using a page coloring scheme or some other mechanism.

In addition to instruction-cache locking, the 24KEf core also supports a data-cache locking mechanism identical to the instruction cache. Critical data segments are locked into the cache on a "per-line" basis. The locked contents can be updated on a store hit, but will not be selected for replacement on a cache miss.

The cache-locking function is always available on all data cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

Cache Memory Configuration

The 24KEf core incorporates on-chip instruction and data caches that are usually implemented from readily available single-port synchronous SRAMs and accessed in two cycles: one cycle for the actual SRAM read and another cycle for the tag comparison, hit determination, and way selection. The instruction and data caches each have their own 64-bit data paths and can be accessed simultaneously. Table 12 lists the 24KEf core instruction and data cache attributes.

Table 12	24KEf TM Core Instruction and Data Cache
	Attributes

Parar	neter	Instruction	Data
Size		0, 8, 16, 32, or 64 KB*	0, 8, 16, 32, or 64 KB
Organizat	ion	4 way set associative	4 way set associative
Line Size		32 Bytes*	32 Bytes
Read Uni	t	64 bits*	64 bits
Write Pol	icies	N/A	write-through without write allocate, write-back with write allocate
Miss resta transfer of		miss word	miss word
Cache Lo	cking	per line	per line

Cache Protocols

The 24KEf core supports the following cache protocols:

- Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such addresses are written directly to main memory, without changing cache contents.
- Write-through, no write allocate: Loads and instruction fetches first search the cache, reading main memory only if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the target address is cache resident. If it is resident, the cache contents are updated, and main memory is also written. If the cache look-up misses, only main memory is written.
- Write-back, write allocate: Stores that miss in the cache will cause a cache refill. Store data, however, is only written to the cache. Caches lines that are written by stores will be marked as dirty. If a dirty line is selected for replacement, the cache line will be written back to main memory.
- Uncached Accelerated: Like uncached, data is never loaded into the cache. Store data can be gathered in a write buffer before being sent out on the bus as a bursted write. This is more efficient than sending out individual writes as occurs in regular uncached mode.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. The primary interface implements the Open Core Protocol (OCP). Additionally, the BIU includes a write buffer.

OCP Interface

Table 13 shows the OCP Performance Report for the24KEf core. This table lists characteristics about the coreand the specific OCP functionality that is supported.

Table 13 OCP Performance Report

Core name	24KEf
-----------	-------

Table 13OCP Performance Report

Core Identity	TBD
Vendor Code	TBD
Core Code	0x93, visible in ProcessorID field of CP0 PrID register
Revision Code	Visible in Revision field of <i>PrID</i> register
Process dependent	No
Frequency range for this core	Synthesizable, so varies based on process, libraries, and implementation
Area	Synthesizable, so varies based on process, libraries, and implementation
Power Estimate	Synthesizable, so varies based on process, libraries, and implementation
Special reset requirements	No
Number of Interfaces	1 OCP master, 2 OCP slave (DMA access for SPRAMs)
Interface Information:	
• Name	OCPMasterInterface
• Туре	Master
Master OCP Interface	
a. Operations issued	RD, WR
b. Issue rate (per OCP cycle)	One per cycle, for all of the types listed above except for a non-standard RD (SYNC) which depends on ack latency.
Maximum number of operations outstanding	6 read operations. All writes are posted, so the OCP fabric determines the maximum number of outstanding writes.
Burst support and effect on issue rates	Fixed burst length of four 64b beats with single request per burst. Burst sequences of WRAP or XOR supported.
High level flow control	None
Number of tags supported and use of those tags	Total of 8 tags: 6 tags for outstanding RD's, 1 tag for WR & 1 tag for SYNC
Connection ID and use of connection information	None
Use of sideband signals	None
	1. MReqInfo handled in a user defined way. 3 bits used to send cacheable attribute information or encode type of L2 CACHE instruction, 1 bit used to signify SYNC.
Implementation restrictions	2. MAddrSpace is used (2 bits) to indicate L2/L3 access.
	4. Core clock is synchronous but a multiple of the OCP clock. The ratios supported are 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4 and 1:5. A helper pulse is required by the core to transfer data from/to the OCP interface without any hazards.
Interface Information:	
• Name	OCPSlaveInterface
• Туре	Slave
Slave OCP Interfaces (DM	A interface to scratchpad)

Table	13	OCP	Performance	Report
-------	----	-----	-------------	--------

a. Operations accepted	RD, WR
b. Issue rate (per OCP cycle)	One per cycle, for all of the types listed above except for a non-standard RD (SYNC) which is not supported.
Maximum number of operations outstanding	2 outstanding operations which includes both RD & WR.
Burst support	Burst access is not supported
High level flow control	Back pressure from slave on data and command accept. Slave assumes no back pressure from the master.
Number of tags supported and use of those tags	Total of 8 tags. Any tag number can be used for read and write operation.
Connection ID and use of connection information	None
Use of sideband signals	None
Implementation restrictions	The slave interface operates at the same clock ratio as that of the master OCP interface.

Write Buffer

The BIU contains a merging write buffer. The purpose of this buffer is to store and combine write transactions before issuing them to the external interface. The write buffer is organized as four 32-byte buffers. Each buffer contains data from a single 32-byte aligned block of memory.

Write Through

When using the write-through cache policy, the write buffer significantly reduces the number of write transactions on the external interface and reduces the amount of stalling in the core due to issuance of multiple writes in a short period of time.

Write Back

The write buffer also holds eviction data for write-back lines. The load-store unit opportunistically pulls dirty data from the cache and sends it to the BIU. It is gathered in the write buffer and sent out as a bursted write.

Uncached Accelerated

For uncached accelerated references, the write buffer can gather multiple writes together and then perform a bursted write to increase the efficiency of the bus. Uncached accelerated gathering is supported for word and double word stores only. Gathering of uncached accelerated stores will start on cache-line aligned addresses, i.e. 32 byte aligned addresses. Uncached accelerated word or double word stores that do not to meet the conditions required to start gathering will be treated like regular uncached stores.

Once an uncached accelerated store meets the requirements needed to start gathering, a gather buffer is reserved for this store. All subsequent uncached accelerated word or double word stores to the same 32B region will write sequentially into this buffer, independent of the word address associated with these latter stores. The uncached accelerated buffer is tagged with the address of the first store.

An uncached accelerated buffer is written to memory (flushed) if:

- 1. The last word in the 32-byte entry being gathered is written. (Implicit flush).
- 2. A PREF Nudge which matches the address associated with the gather buffer (Explicit flush).
- 3. A SYNC instruction is executed. (Explicit flush).
- 4. Bits <31:5> of the address of a Load instruction match the address associated with the gather buffer. (Implicit flush)
- Bits <31:5> of the address of an uncached accelerated store do not match the address associated with the gather buffer. Uncached accelerated store to a different 32B region (Implicit flush)
- 6. An exception occurs. (Implicit flush)

When an uncached accelerated buffer is flushed, the address sent out on the system interface is the address associated with the gather buffer.

Caveats:

- Any uncached loads or stores to unrelated addresses that occur between uncached accelerated stores that are part of a gather sequence will go out of order. They will not enforce ordering.
- One constraint imposed on the gathering is that doubleword stores are only allowed to write to double word aligned locations in the buffer. For example if uncached accelerated gathering starts with a Store Word (SW/SWC1), it may not be followed by a Store Double (SDC1)
- Uncached accelerated stores of the following types are not intended to be used by software and may generate unpredictable results:
 - Byte, Half, or unaligned Stores
 - Store conditionals
- In order for software to be able to run functionally correct on implementations without uncached accelerated stores, software should always generate accesses starting on a cache-line aligned address, proceed to generate correctly incremented sequential addresses and observe the restrictions for uncached accelerated stores.

Burst Order

The core is capable of generating burst transactions on the OCP interface. A burst transaction is used to transfer multiple related data items. Burst transactions on the 24KEf core always consist of a single request, followed by four beats of data transfer.

Burst read transactions initiated by the core always contain four 64b data transfers. In addition, the data requested is always a 32-byte-aligned block. Burst reads are always initiated for cacheable instruction or data reads which have missed in the primary instruction or data cache.

The order of words within this 32-byte block varies depending on which of the words in the block is being requested by the execution unit and the ordering protocol selected. The burst always starts with the critical word requested by the execution unit and proceeds in either an ascending or descending order wrapping at the end of an aligned block. The burst order sequence may be sequential or sub-block. These are equivalent to WRAP and XOR as defined by the OCP protocol. The selection is determined by the static input pin, *SI_SBlock*.

Table 14 and Table 15 show the implied sequence of address bits 3 and 4 for the two possible burst orders. Since there is only a single request command for a burst sequence, note that only the starting address is actually transmitted by the core.

Table 14	Sequential Burst Order
	bequential Durbt Order

Starting Address OC_MAddr[4:3]	Address Progression of OC_MAddr[4:3]
00	00, 01, 10, 11
01	01, 10, 11, 00
10	10, 11, 00, 01
11	11, 00, 01, 10

Table 15 Sub-block Burst Order

Starting Address OC_MAddr[4:3]	Address Progression of OC_MAddr[4:3]
00	00, 01, 10, 11
01	01, 00, 11, 10
10	10, 11, 00, 01
11	11, 10, 01, 00

Burst write transactions can also occur when a full 32-byte block is written to memory. This may occur in the case of a cache line eviction, or when a full line has been gathered in the write buffer. For writes, the burst sequence always starts with an initial address of 00 on *OC_MAddr[4:3]*, so the write burst sequence is actually the same for sequential or sub-block orders.

SimpleBE Mode

To aid in attaching the 24KEf core to structures which cannot easily handle arbitrary byte enable patterns, there is a mode that generates only "simple" byte enables. Only byte enables representing naturally aligned byte, halfword, word, and doubleword transactions will be generated. Legal byte enable patterns are shown in Table 16.

OC_MByteEn[7:0] or OC_MDataByteEn[7:0]	
0000_0001	
0000_0010	
0000_0100	
0000_1000	
0001_0000	
0010_0000	
0100_0000	
1000_0000	
0000_0011	
0000_1100	
0011_0000	
1100_0000	
0000_1111	
1111_0000	
1111_1111	
	_

Table 16 Valid SimpleBE Byte Enable Patterns

The only case where a read can generate "non-simple" byte enables is on an uncached tri-byte load (LWL/LWR). In SimpleBE mode, such reads will be converted into a word read on the external interface. Writes with non-simple byte enable patterns can arise when a sequence of stores is processed by the merging write buffer, or from uncached tri-byte stores (SWL/SWR). In SimpleBE mode, these stores will be broken into multiple write transactions.

Clocking

The core has 3 primary clock domains:

- Core domain This is the main core clock domain, controlled by the *SI_ClkIn* clock input.
- OCP domain This domain controls the OCP bus interface logic. This domain is synchronous to SI_ClkIn, but can be run at lower frequencies. Core to bus ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, 4:1 and 5:1 are supported. The core does not contain an explicit OCP input clock; all flops are actually controlled by SI_ClkIn. To enable the core to determine the frequency and phase relationship between the core and OCP domains, a "helper" pulse, SI_OCPSync, is required in the SI_ClkIn domain. SI_OCPSync is used internally to control when to drive OCP outputs and when to sample OCP inputs. Figure 12 illustrates the required waveform for SI_OCPSync at the various clock ratios. All OCP outputs are registered. All OCP inputs except OC SCmdAccept and OC SDataAccept are also registered.
- TAP domain This is a low speed clock domain for the EJTAG TAP controller, controlled by the *EJ_TCK* pin. It is asynchronous to *SI_ClkIn*.

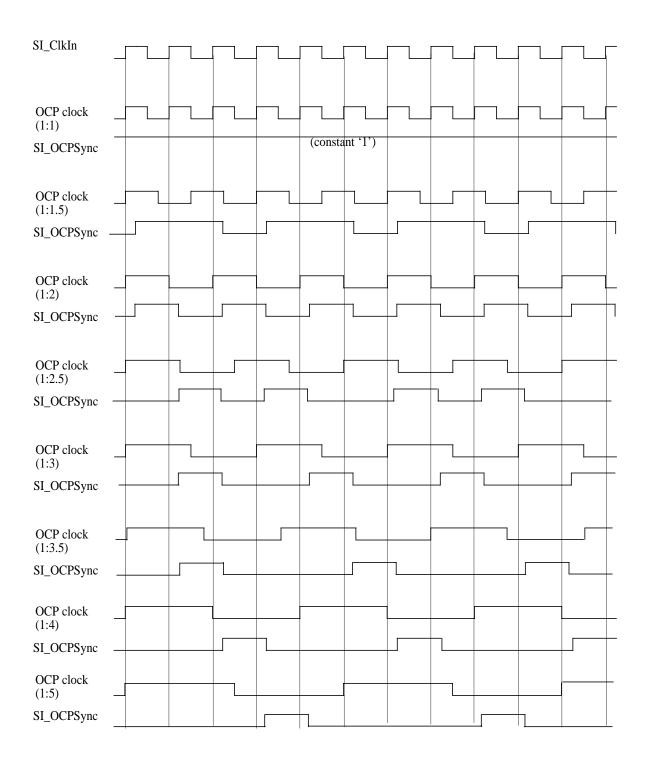


Figure 12 Required *SI_OCPSync* waveforms

Hardware Reset

Unlike previous MIPS cores, a 24KEf core only has a single reset input. Historically, cold reset was used to reset

a PLL. In synthesizable cores without a PLL, the two inputs were ORed together internally and then treated identically (except for a *Status* bit indicating which reset was seen).

The 24KEf interface has removed the second reset type and only includes the *SI_Reset* pin.

The *SI_Reset* input is used to initialize critical hardware state. It can be asserted either synchronously or asynchronously to the core clock, *SI_ClkIn*, and will trigger a Reset exception. The reset signal is active high, and must be asserted for a minimum of 5 *SI_ClkIn* cycles. The falling edge triggers the Reset exception. The reset signal must be asserted at power-on or whenever hardware initialization of the core is desired.

In debug mode, EJTAG can request that a 'soft' reset be masked. This request is signalled via the EJ_SRstE pin. When this pin is deasserted, the system can choose to block some sources of soft reset. Hard resets, such as power-on reset or a reset switch should not be blocked by this signal.

Power Management

The 24KEf core offers a number of power management features, including low-power design, active power management, and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during idle periods.

The 24KEf core provides two mechanisms for system-level low power support:

- Register-controlled power management
- · Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CPO Status register provides a software mechanism for placing the system into a low power state. The state of the RP bit is available externally via the *SI_RP* signal. The external agent then decides whether to place the device in a low power mode, such as reducing the system clock frequency.

Three additional bits, $Status_{EXL}$, $Status_{ERL}$, and $Debug_{DM}$ support the power management function by allowing the user to change the power state if an exception or error occurs while the 24KEf core is in a low power state. Depending on what type of exception is taken, one of these three bits will be asserted and reflected on the *SI_EXL*, *SI_ERL*, or *EJ_DebugM* outputs. The external agent can look at these signals and determine whether to leave the low power state to service the exception.

The following 4 power-down signals are part of the system interface and change state as the corresponding bits in the CP0 registers are set or cleared:

- The *SI_RP* signal represents the state of the RP bit (27) in the CP0 *Status* register.
- The *SI_EXL* signal represents the state of the EXL bit (1) in the CP0 *Status* register.
- The *SI_ERL* signal represents the state of the ERL bit (2) in the CP0 *Status* register.
- The *EJ_DebugM* signal represents the state of the DM bit (30) in the CP0 *Debug* register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is through execution of the WAIT instruction. When the WAIT instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins (*SI_Int[5:0]*, *SI_NMI*, and *SI_Reset*) continue to run. Once the CPU is in instruction-controlled power management mode, any interrupt, NMI, or reset condition causes the CPU to exit this mode and resume normal operation.

The 24KEf core asserts the *SI_Sleep* signal, which is part of the system interface, whenever the WAIT instruction is executed. The assertion of *SI_Sleep* indicates that the clock has stopped and the 24KEf core is waiting for an interrupt.

Local clock gating

A majority of the power consumed by the 24KEf core is often in the clock tree and clocking registers. The core has support for extensive use of local gated-clocks. Powerconscious implementors can use these gated clocks to significantly reduce power consumption within the core.

DSP ASE

The 24KEf core implements the DSP ASE to benefit a wide range of DSP, Media, and DSP-like algorithms. The DSP extension includes support for operations on fractional data types, saturating arithmetic, and register SIMD operations. Fractional data types Q15 and Q31 are supported. Register SIMD operations can perform up to four simultaneous add, subtract or shift operations and two simultaneous multiply operations.

In addition, the extension includes some key features that efficiently address specific problems often encountered in DSP applications. These include, for example, support for

complex multiply, variable bit insert and extract, and implementation and use of virtual circular buffers. The extension also makes available three additional sets of HI-LO accumulators to better facilitate common accumulate functions such as filter operation and convolutions.

CorExtend[™] User Defined Instruction Extensions

The optional CorExtend User Defined Instruction (UDI) block enables the implementation of a small number of application-specific instructions that are tightly coupled to the core's integer execution unit.

The interface to the CorExtend block is similar to the Multiply-Divide Unit, allowing non-blocking, pipelined multi-cycle operations. A portion of the hooks into the MDU control logic and also allows the HI/LO accumulation registers to be used by the CorExtend block.

CorExtend instructions may operate on a general-purpose register, immediate data specified by the instruction word, or local state stored within the UDI block. The destination may be a general-purpose register, HI/LO, or local UDI state. The operation may complete in one cycle or multiple cycles, if desired.

Coprocessor 2 interface

The 24KEf core can be configured to have an interface for an on-chip coprocessor. The interface allows the coprocessor to be tightly coupled to the processor core, allowing high performance solutions, like integrating a graphics accelerator or custom DSP.

The coprocessor interface is extensible and standardized on MIPS cores, allowing design reuse. The 24KEf core supports a subset of the full coprocessor interface standard: single issue, 64 bit in-order data transfers.

The coprocessor interface is designed to ease integration with customer IP. The interface allows high-performance communication between the core and coprocessor. There are no late or critical timing signals on the interface.

Data Scratchpad RAM (DSPRAM)

The 24KEf core can be configured to include an optional Data scratchpad RAM independent of the data cache configuration. A separate OCP slave interface allows a DMA master to access the data scratchpad RAM.

To demonstrate use of the scratchpad capability, MIPS provides a default design that includes one contiguous 8KB RAM with cache like access. DSPRAM hit supersedes data cache hit. DSPRAM is indexed by virtual address. The hit information is based on the physical address in the base register. DSPRAM can be mapped to either cacheable or non-cacheable address space. A sophisticated arbitration scheme and instruction slip in the pipe prevents unnecessary stalls.

Only store instructions which are guaranteed to complete and hit in the DSPRAM, arbitrate for the RAM. The DMA access priority with respect to the core access is determined by the input pin *SI_DMA_Priority*. The DSPRAM interface supports multi-cycle access to the RAM array to accommodate slow devices or larger memory sizes. The interface allows addressing of DSPRAM sizes up to 1MB. The interface also supports 64-bit wide data access and provides a mechanism to back-stall the core pipeline.

Instruction Scratchpad RAM (ISPRAM)

The 24KEf core can be configured to include an optional instruction scratchpad RAM independent of the instruction cache configuration. A separate OCP slave interface allows a DMA master to access the instruction scratchpad RAM.

To demonstrate use of the scratchpad capability, MIPS provides a default design that includes one contiguous 8KB RAM with cache like access. ISPRAM hit supersedes instruction cache hit. ISPRAM is indexed by virtual address. The hit information is based on the physical address in the base register. ISPRAM can be mapped to either cacheable or non-cacheable address space.

The DMA access priority with respect to the core access is determined by the input pin *SI_IDMA_Priority*. The ISPRAM interface supports multi-cycle access to the RAM array to accommodate slow devices or larger memory sizes. The interface allows addressing of ISPRAM sizes up to 1MB. The interface also supports 64-bit wide data access and provides a mechanism to back-stall the core pipeline.

EJTAG Debug Support

The 24KEf core includes an Enhanced JTAG (EJTAG) block for use in the software debug of application and kernel code. In addition to standard user/supervisor/kernel modes of operation, the 24KEf core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a debug exception return (DERET)

instruction is executed. During this time, the processor executes the debug exception handler routine.

Refer to the section called "External Interface Signals" on page 37 for a list of EJTAG interface signals.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the 24KEf core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define what registers are selected and how they are used.

Debug Registers

Three debug registers (*DEBUG*, *DEPC*, and *DESAVE*) have been added to the MIPS Coprocessor 0 (CP0) register set. The *DEBUG* register shows the cause of the debug exception and is used for setting up single-step operations. The *DEPC*, or Debug Exception Program Counter, register holds the address on which the debug exception was taken. This is used to resume program execution after the debug operation finishes. Finally, the *DESAVE*, or Debug Exception Save, register enables the saving of general-purpose registers used during execution of the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET) instruction is executed. When this instruction is executed, the system exits debug mode, allowing normal execution of application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints defined in the EJTAG specification. These breakpoints stop the normal operation of the CPU and force the system into debug mode. There are two types of simple hardware breakpoints implemented in the 24KEf core: Instruction breakpoints and Data breakpoints.

During synthesis, the 24KEf core can be configured with or without hardware breakpoints. The following breakpoint options are supported:

- · Zero or four instruction breakpoints
- Zero or two data breakpoints

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address. Instruction breaks can also be made on the ASID value used by the MMU. A mask can be applied to the virtual address to set breakpoints on a range of instructions. Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to the Instruction breakpoint. Data breakpoints can be set on a load, a store, or both. Data breakpoints can also be set based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

MIPS Trace

The 24KEf core includes optional MIPS Trace support for real-time tracing of instruction addresses, data addresses and data values. The trace information is collected in an onchip or off-chip memory, for post-capture processing by trace regeneration software.

On-chip trace memory may be configured in size from 0 to 8 MB; it is accessed through the existing EJTAG TAP interface and requires no additional chip pins. Off-chip trace memory is accessed through a special trace probe and can be configured to use 4, 8, or 16 data pins plus a clock.

Testability

Testability for production testing of the core is supported through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is supported, with a configurable number of scan chains. ATPG test coverage can exceed 99%, depending on standard cell libraries and configuration options.

Memory BIST

Memory BIST for the cache arrays, scratchpad memories and on-chip trace memory is optional, but can be implemented either through the use of integrated BIST features provided with the core, or inserted with an industry-standard memory BIST CAD tool.

Integrated Memory BIST

The core provides an integrated memory BIST solution for testing the internal cache SRAMs, scratchpad RAMs and on-chip trace RAM, using BIST controllers and logic tightly coupled to the cache subsystem. Several parameters associated with the integrated BIST controllers are configurable, including the algorithm (March C+ or IFA-13).

User-specified Memory BIST

Memory BIST can also be inserted with a CAD tool or other user-specified method. Wrapper modules and signal buses of configurable width are provided within the core to facilitate this approach.

Build-Time Configuration Options

The 24KEf core allows a number of features to be customized based on the intended application. Table 17 summarizes the key configuration options that can be selected when the core is synthesized and implemented.

For a core that has already been built, software can determine the value of many of these options by querying an appropriate register field. Refer to the *MIPS32 24KE Processor Core Family Software User's Manual* for a more complete description of these fields. The value of some options that do not have a functional effect on the core are not visible to software.

Option	Choices	Software Visibility	
Integer register file sets	1, 2, or 4	SRSCtl _{HSS}	
Integer register file implementation style	Flops or generator	N/A	
Memory Management Type	TLB or FMT	Config _{MT}	
TLB Size	16, 32, or 64 dual entries	Config1 _{MMUSize}	
TLB data array implementation style	Flops or generator	N/A	
Instruction hardware breakpoints	0 or 4	DCR _{IB} , IBS _{BCN}	
Data hardware breakpoints	0 or 2	DCR _{DB} , DBS _{BCN}	
MIPS Trace support	Present or not	Config3 _{TL}	
MIPS Trace memory location	On-core, off-chip or both	TCBCONFIG _{OnT} , TCBCONFIG _{OfT}	
MIPS Trace on-chip memory size	256B - 8MB	TCBCONFIG _{SZ}	
MIPS Trace triggers	0 - 8	TCBCONFIG _{TRIG}	
CorExtend interface (Pro only)	Present or not	Config _{UDI} *	
FPU clock ratio relative to integer core	1:1 or 1:2	Config7 _{FPR}	
Coprocessor2 interface	Present or not	Config1 _{C2} *	
Instruction ScratchPad RAM interface	Present or not	Config _{ISP} *	
Data ScratchPad RAM interface	Present or not	Config _{DSP} *	
I-cache size	0, 8, 16, 32, or 64 KB	Config1 _{IL} , Config1 _{IS}	
D-cache size	0, 8, 16, 32, or 64 KB	Config1 _{DL} , Config1 _{DS}	
D-cache hardware aliasing support	Present or not (for 32KB only)	Config7 _{AR}	
Cache parity	Present or not	ErrCtl _{PE}	
* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.			

Table 17 Build-time Configuration Options

| |

Option	Choices	Software Visibility
Memory BIST	Integrated (March C+ or March C+ plus IFA-13), custom, or none	N/A
Clock gating	Top-level, integer register file array, FPU register file array, TLB array, fine-grain, or none	N/A
* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.		

Table 17 Build-time Configuration Options

Instruction Set

The 24KEf core instruction set complies with the MIPS32 instruction set architecture. Table 18 provides a summary of instructions implemented by the 24KEf core.

Table 18 24KEfTM Core Instruction Set

Instruction	Description	Function
ABS.fmt	Floating Point Absolute Value fmt = s,d	Fd = abs(Fs)
ADD	Integer Add	Rd = Rs + Rt
ADD.fmt	Floating Point Add fmt = s,d	Fd = Fs + Ft
ADDI	Integer Add Immediate	Rt = Rs + Immed
ADDIU	Unsigned Integer Add Immediate	Rt = Rs + _U Immed
ADDIUPC	Unsigned Integer Add Immediate to PC (MIPS16 only)	Rt = PC + _u Immed
ADDU	Unsigned Integer Add	Rd = Rs + _U Rt
AND	Logical AND	Rd = Rs & Rt
ANDI	Logical AND Immediate	$Rt = Rs \& (0_{16} Immed)$
ASMACRO	Application Specific Macro - allows macro sequences to be defined by implementor (MIPS16 only)	Defined by implementor
В	Unconditional Branch (Assembler idiom for: BEQ r0, r0, offset)	PC += (int)offset
BAL	Branch and Link (Assembler idiom for: BGEZAL r0, offset)	GPR[31] = PC + 8 PC += (int)offset
BC1F	Branch On Floating Point False	if (cc[i] == 0) then PC += (int)offset
BC1FL	Branch On Floating Point False Likely	<pre>if (cc[i] == 0)then PC += (int)offset else Ignore Next Instruction</pre>
BC1T	Branch On Floating Point True	<pre>if(cc[i] == 1) then PC += (int)offset</pre>

Instruction	Description	Function
BC1TL	Branch On Floating Point True Likely	<pre>if (cc[i] == 1) then PC += (int)offset else Ignore Next Instruction</pre>
BC2F	Branch On COP2 Condition False	<pre>if COP2Condition(cc) == 0 PC += (int)offset</pre>
BC2FL	Branch On COP2 Condition False Likely	<pre>if COP2Condition(cc) == 0 PC += (int)offset else Ignore Next Instruction</pre>
BC2T	Branch On COP2 Condition True	<pre>if COP2Condition(cc) == 1 PC += (int)offset</pre>
BC2TL	Branch On COP2 Condition True Likely	<pre>if COP2Condition(cc) == 1 PC += (int)offset else Ignore Next Instruction</pre>
BEQ	Branch On Equal	if Rs == Rt PC += (int)offset
BEQL	Branch On Equal Likely	<pre>if Rs == Rt PC += (int)offset else Ignore Next Instruction</pre>
BGEZ	Branch on Greater Than or Equal To Zero	if !Rs[31] PC += (int)offset
BGEZAL	Branch on Greater Than or Equal To Zero And Link	GPR[31] = PC + 8 if !Rs[31] PC += (int)offset
BGEZALL	Branch on Greater Than or Equal To Zero And Link Likely	<pre>GPR[31] = PC + 8 if !Rs[31] PC += (int)offset else Ignore Next Instruction</pre>
BGEZL	Branch on Greater Than or Equal To Zero Likely	if !Rs[31] PC += (int)offset else Ignore Next Instruction
BGTZ	Branch on Greater Than Zero	if !Rs[31] && Rs != 0 PC += (int)offset
BGTZL	Branch on Greater Than Zero Likely	<pre>if !Rs[31] && Rs != 0 PC += (int)offset else Ignore Next Instruction</pre>
BLEZ	Branch on Less Than or Equal to Zero	if Rs[31] Rs == 0 PC += (int)offset
BLEZL	Branch on Less Than or Equal to Zero Likely	<pre>if Rs[31] Rs == 0 PC += (int)offset else Ignore Next Instruction</pre>

Table 1824KEfTM Core Instruction Set (Continued)

Instruction	Description	Function
BLTZ	Branch on Less Than Zero	if Rs[31] PC += (int)offset
BLTZAL	Branch on Less Than Zero And Link	GPR[31] = PC + 8 if Rs[31] PC += (int)offset
BLTZALL	Branch on Less Than Zero And Link Likely	<pre>GPR[31] = PC + 8 if Rs[31] PC += (int)offset else Ignore Next Instruction</pre>
BLTZL	Branch on Less Than Zero Likely	if Rs[31] PC += (int)offset else Ignore Next Instruction
BNE	Branch on Not Equal	if Rs != Rt PC += (int)offset
BNEL	Branch on Not Equal Likely	<pre>if Rs != Rt PC += (int)offset else Ignore Next Instruction</pre>
BREAK	Breakpoint	Break Exception
C.cond.fmt	Floating Point Compare fmt = s,d	cc[i] = Fs compare_cond Ft
CACHE	Cache Operation	See Software User's Manual
CEIL.L.fmt	Floating Point Ceiling to Long Fixed Point	Fd = convert_and_round(Fs)
CEIL.W.fmt	Floating Point Ceiling to Word Fixed Point	Fd = convert_and_round(Fs)
CFC1	Move Control Word From Floating Point	Rt = FP_Control[Fs]
CFC2	Move Control Word From Coprocessor 2	Rt = CCR[2, Rs]
CLO	Count Leading Ones	Rd = NumLeadingOnes(Rs)
CLZ	Count Leading Zeroes	Rd = NumLeadingZeroes(Rs)
COP0	Coprocessor 0 Operation	See Software User's Manual
COP2	Coprocessor 2 Operation	See Coprocessor 2 Description
CTC1	Move Control Word To Floating Point	<pre>FP_Control[Fs] = Rt</pre>
CTC2	Move Control Word To Coprocessor 2	CCR[2, n] = Rt
CVT.D.fmt	Floating Point Convert to Double Floating Point fmt = S,W,L	Fd = convert_and_round(Fs)
CVT.D.fmt	Floating Point Convert to Double Floating Point fmt = S,W,L	Fd = convert_and_round(Fs)
CVT.L.fmt	Floating Point Convert to Long Fixed Point fmt = S,D	Fd = convert_and_round(Fs)

Table	18	24KEf TM Core Instruction Set (Continued)	

Instruction	Description	Function
CVT.S.fmt	Floating Point Convert to Single Floating Point fmt = W,D,L	Fd = convert_and_round(Fs)
CVT.W.fmt	Floating Point Convert to Word Fixed Point fmt = S,D	Fd = convert_and_round(Fs)
DERET	Return from Debug Exception	PC = DEPC Exit Debug Mode
DI	Atomically Disable Interrupts	Rt = Status; Status _{IE} = 0
DIV	Divide	LO = (int)Rs / (int)Rt HI = (int)Rs % (int)Rt
DIV.fmt	Floating Point Divide fmt = S,D	Fd = Fs/Ft
DIVU	Unsigned Divide	LO = (uns)Rs / (uns)Rt HI = (uns)Rs % (uns)Rt
ЕНВ	Execution Hazard Barrier	Stop instruction execution until execution hazards are cleared
EI	Atomically Enable Interrupts	Rt = Status; Status _{IE} = 1
ERET	Return from Exception	<pre>if SR[2] PC = ErrorEPC else PC = EPC SR[1] = 0 SR[2] = 0 LL = 0</pre>
EXT	Extract Bit Field	Rt = ExtractField(Rs, pos, size)
FLOOR.L.fmt	Floating Point Floor to Long Fixed Point fmt = S,D	Fd = convert_and_round(Fs)
FLOOR.W.fmt	Floating Point Floor to Word Fixed Point fmt = S,D	Fd = convert_and_round(Fs)
INS	Insert Bit Field	<pre>Rt = InsertField(Rs, Rt, pos, size)</pre>
J	Unconditional Jump	PC = PC[31:28] offset<<2
JAL	Jump and Link	GPR[31] = PC + 8 PC = PC[31:28] offset<<2
JALR	Jump and Link Register	Rd = PC + 8 PC = Rs
JALR.HB	Jump and Link Register with Hazard Barrier	Like JALR, but also clears execution and instruction hazards
JALRC	Jump and Link Register Compact - do not execute instruction in jump delay slot(MIPS16 only)	Rd = PC + 2 PC = Rs
JR	Jump Register	PC = Rs

Table 1824KEfTM Core Instruction Set (Continued)

JR.HBJump Register with Hazard BarrierLike JR, but also clears execution and instruction hazardSJRCJump Register Compact - do not execute instruction in jump delay slot (MIPS16 only)FC = RsLBLoad ByteRt = (byte)Mem[Rs+offset]LBUUnsigned Load ByteRt = (ubyte)Mem[Rs+offset]LDC1Load Doubleword to Floating PointFt = memory[base+offset]LDC2Load Doubleword to Coprocessor 2CFR[2,Rt] = Mem[Rs+offset]LDX1Load Doubleword no Coprocessor 2CFR[2,Rt] = Mem[Rs+offset]LDX1Load Doubleword no Floating PointFd = memory[base+index]LHLoad Dubleword Indexed to Floating PointRt = (ubalf)Mem[Rs+offset]LHLoad Linked WordRt = (ubalf)Mem[Rs+offset]LLLoad Linked WordRt = 1 LLAGr = Rs + offsetLWLoad Doubleword Indexed Unaligned to Floating PointFd = memory[base+index] psize-1 1, -3LWLoad Doubleword Indexed Unaligned to Floating PointFd = memory[base+index] psize-1 1, -3LWC1Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWC2Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWC1Load Word Indexed to Floating PointFd = memory[base+index]LWC1Load Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADDMultiply-AddHI LO += (int)Rs * (int)RtMADDMultiply-AddHI LO += (uns)Rs * (uns)RtMADDMultiply-AddHI LO += CPR[0,	Instruction	Description	Function
JRCin jump delay slot (MIPS 16 only)LBLoad ByteRt = (byte) Mem[Rs+offset]LBUUnsigned Load ByteRt = (ubyte) Mem[Rs+offset]LDC1Load Doubleword to Floating PointFt = memory [base+offset]LDC2Load Doubleword to Coprocessor 2CPR[2,Rt] = Mem[Rs+offset]LDC1Load Doubleword to Coprocessor 2CPR[2,Rt] = Mem[Rs+offset]LDC1Load Doubleword Indexed to Floating PointFd = memory [base+index]LHLoad HalfwordRt = (uhalf)Mem[Rs+offset]LHUUnsigned Load HalfwordRt = immediateLLLoad Linked WordRt = immediate << 16	JR.HB	Jump Register with Hazard Barrier	execution and instruction
LBUUnsigned Load ByteRt = (ubyte))Mem[Rs+offset]LDC1Load Doubleword to Floating PointFt = memory[base+offset]LDC2Load Doubleword to Coprocessor 2CPR[2,Rt] = Mem[Rs+offset]LDXC1Load Doubleword Indexed to Floating PointFd = memory[base+index]LHLoad HalfwordRt = (half)Mem[Rs+offset]LHLoad Linked WordRt = (ubalf)Mem[Rs+offset]LLLoad Linked WordRt = immediate << 16	JRC		PC = Rs
LDC1Load Doubleword to Floating PointFt = memory [base+offset]LDC2Load Doubleword to Coprocessor 2CPR(2,Rt) = Mem(Rs+offset)LDXC1Load Doubleword Indexed to Floating PointFd = memory [base+index]LHLoad HalfwordRt = (half)Mem(Rs+offset)LHUnsigned Load HalfwordRt = (uhalf)Mem(Rs+offset)LLLoad Linked WordRt = (uhalf)Mem(Rs+offset)LLLoad Unper ImmediateRt = immediate << 16	LB	Load Byte	Rt = (byte)Mem[Rs+offset]
LDC2Load Doubleword to Coprocessor 2CPR[2,Rt] = Mem[Rs+offset]LDXC1Load Doubleword Indexed to Floating PointFd = memory[Dase+index]LHLoad HalfwordRt = (half)Mem[Rs+offset]LHUUnsigned Load HalfwordRt = (half)Mem[Rs+offset]LLLoad Linked WordRt = (mem[Rs+offset]]LULoad Upper ImmediateRt = memory[base+index]psize- 13LUILoad Oubleword Indexed Unaligned to Floating PointPd = memory[(base+index)psize- 13LWLoad WordRt = Mem[Rs+offset]LWC1Load Word to Floating PointFt = memory[base+offset]LWC2Load Word to Floating PointFt = memory[base+offset]LWC2Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWRC1Load Word Indexed to Floating PointFd = memory[base+index]LWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADD.Multiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMADDUMultiply-Add UnsignedRt = FsMFC1Move From Giprocessor 0Rt = FsMFC1Move From High Half of FPRRt = Fs	LBU	Unsigned Load Byte	Rt = (ubyte))Mem[Rs+offset]
LDXC1Load Doubleword Indexed to Floating PointFd = memory[base+index]LHLoad HalfwordRt = (half)Mem[Rs+offset]LHUUnsigned Load HalfwordRt = (uhalf)Mem[Rs+offset]LLLoad Linked WordRt = immediate(state)LULoad Upper ImmediateRt = immediate << 16	LDC1	Load Doubleword to Floating Point	<pre>Ft = memory[base+offset]</pre>
LHLoad HalfwordRt = (half)Mem[Rs+offset]LHUUnsigned Load HalfwordRt = (uhalf)Mem[Rs+offset]LLLoad Linked WordRt = Mem[Rs+offset]LLLoad Linked WordRt = immediate << 16	LDC2	Load Doubleword to Coprocessor 2	CPR[2,Rt] = Mem[Rs+offset]
LHUUnsigned Load HalfwordRt = (uhalf)Mem[Rs+offset]LHULoad Linked WordRt = Mem[Rs+offset]LLL = 1LLAdr = Rs + offsetLUILoad Upper ImmediateRt = immediate << 16	LDXC1	Load Doubleword Indexed to Floating Point	Fd = memory[base+index]
LLLoad Linked WordRt = Mem[Rs+offset] LL = 1 LLAdr = Rs + offsetLUILoad Upper ImmediateRt = immediate << 16	LH	Load Halfword	Rt = (half)Mem[Rs+offset]
LLLoad Linked WordLL = 1 LLAdr = Rs + offsetLUILoad Upper ImmediateRt = immediate << 16	LHU	Unsigned Load Halfword	Rt = (uhalf)Mem[Rs+offset]
LUXCILoad Doubleword Indexed Unaligned to Floating PointFd = memory[(base+index)psize- 13LWLoad WordRt = Mem[Rs+offset]LWC1Load Word to Floating PointFt = memory[base+offset]LWC2Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWPCLoad Word, PC relativeRt = Mem(PC+offset]LWXC1Load Word Indexed to Floating PointFd = memory[base+index]LWLLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI L0 += (int)Rs * (int)Rt fmt = S,DMADDUMultiply-Add UnsignedHI L0 += (uns)Rs * (uns)Rt MFC0MFC0Move From Coprocessor 0Rt = PsMFC1Move From High Half of FPRRt = Fs 6332	LL	Load Linked Word	LL = 1
LUXC1Load Doubleword Indexed Unaligned to Floating Pointmemory[(base+index)psize- 13LWLoad WordRt = Mem[Rs+offset]LWC1Load Word to Floating PointFt = memory[base+offset]LWC2Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWPCLoad Word, PC relativeRt = Mem[PC+offset]LWXC1Load Word Indexed to Floating PointFd = memory[base+index]LWLLoad Word Indexed to Floating PointFd = memory[base+index]LWRLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI L0 += (int)Rs * (int)RtMADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = FsMFHC1Move From High Half of FPRRt = Fs	LUI	Load Upper Immediate	Rt = immediate << 16
LWC1Load Word to Floating PointFt = memory[base+offset]LWC2Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWPCLoad Word, PC relativeRt = Mem[PC+offset]LWXC1Load Word Indexed to Floating PointFd = memory[base+index]LWLLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)Rt Fd = Fs * Ft + FrMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = Fs 6332	LUXC1		memory[(base+index)psize-
LWC2Load Word To Coprocessor 2CPR[2,Rt] = (word)Mem[Rs+offset]LWPCLoad Word, PC relativeRt = Mem[PC+offset]LWXC1Load Word Indexed to Floating PointFd = memory[base+index]LWLLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMADUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = FsMFC1Move From High Half of FPRRt = Fs	LW	Load Word	Rt = Mem[Rs+offset]
LWC2Load Word To Coprocessor 2(word)Mem[Rs+offset]LWPCLoad Word, PC relativeRt = Mem[PC+offset]LWXC1Load Word Indexed to Floating PointFd = memory[base+index]LWLLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)Rt fmt = S,DMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)Rt Rt = CPR[0, Rd, sel]MFC1Move From FPRRt = Fs MFHC1MADDMove From High Half of FPRRt = Fs 6332	LWC1	Load Word to Floating Point	<pre>Ft = memory[base+offset]</pre>
LWXC1Load Word Indexed to Floating PointFd = memory[base+index]LWLLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = FsMFHC1Move From High Half of FPRRt = Fs	LWC2	Load Word To Coprocessor 2	
LWLLoad Word LeftSee Architecture Reference ManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = FsMFHC1Move From High Half of FPRRt = Fs	LWPC	Load Word, PC relative	Rt = Mem[PC+offset]
LwLLoad Word LeftManualLWRLoad Word RightSee Architecture Reference ManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = FsMFHC1Move From High Half of FPRRt = Fs ₆₃₃₂	LWXC1	Load Word Indexed to Floating Point	Fd = memory[base+index]
LWRLoad Word RightManualMADDMultiply-AddHI LO += (int)Rs * (int)RtMADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From High Half of FPRRt = FsMFHC1Move From High Half of FPRRt = Fs6332	LWL	Load Word Left	
MADD.fmtFloating Point Multiply Add fmt = S,DFd = Fs * Ft + FrMADDUMultiply-Add UnsignedHI LO += (uns)Rs * (uns)RtMFC0Move From Coprocessor 0Rt = CPR[0, Rd, sel]MFC1Move From FPRRt = FsMFHC1Move From High Half of FPRRt = Fs ₆₃₃₂	LWR	Load Word Right	
MADD.Imt fmt = S,D MADDU Multiply-Add Unsigned HI L0 += (uns)Rs * (uns)Rt MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel] MFC1 Move From FPR Rt = Fs MFHC1 Move From High Half of FPR Rt = Fs ₆₃₃₂	MADD	Multiply-Add	HI LO += (int)Rs * (int)Rt
MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel] MFC1 Move From FPR Rt = Fs MFHC1 Move From High Half of FPR Rt = Fs ₆₃₃₂	MADD.fmt		Fd = Fs * Ft + Fr
MFC1 Move From FPR Rt = Fs MFHC1 Move From High Half of FPR Rt = Fs ₆₃₃₂	MADDU	Multiply-Add Unsigned	HI LO += (uns)Rs * (uns)Rt
MFHC1 Move From High Half of FPR Rt = Fs ₆₃₃₂	MFC0	Move From Coprocessor 0	Rt = CPR[0, Rd, sel]
	MFC1	Move From FPR	Rt = Fs
MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]	MFHC1	Move From High Half of FPR	$Rt = Fs_{6332}$
	MFC2	Move From Coprocessor 2	Rt = CPR[2, Rd, sel]

Table 18	24KEf TM Core Instruction Set (Contin	med)
Table 10	24KEI COLC Instruction Set (Contin	ucu)

Instruction	Description	Function
MFHC2	Move From High Half of Coprocessor 2	Rt = CPR[2, Rd, sel] ₆₃₃₂
MFHI	Move From HI	Rd = HI
MFLO	Move From LO	Rd = LO
MOV.fmt	Floating Point Move	Fd = Fs
MOVF	GPR Conditional Move on Floating Point False	if (cc[i] == 0) then Rd = Rs
MOVF.fmt	FPR Conditional Move on Floating Point False	if $(cc[i] == 0)$ then $Fd = Fs$
MOVN	GPR Conditional Move on Not Zero	if Rt ≠ 0 then Rd = Rs
MOVN.fmt	FPR Conditional Move on Not Zero	if Rt ≠ 0 then Fd = Fs
MOVT	GPR Conditional Move on Floating Point True	if (cc[i] == 1) then Rd = Rs
MOVT.fmt	FPR Conditional Move on Floating Point True	if $(cc[i] == 1)$ then $Fd = Fs$
MOVZ	GPR Conditional Move on Zero	if Rt = 0 then Rd = Rs
MOVZ.fmt	FPR Conditional Move on Zero	if (Rt == 0) then Fd = Fs
MSUB	Multiply-Subtract	HI LO -= (int)Rs * (int)Rt
MSUB.fmt	Floating Point Multiply Subtract fmt = S,D	Fd = Fs * Ft - Fr
MSUBU	Multiply-Subtract Unsigned	HI LO -= (uns)Rs * (uns)Rt
MTC0	Move To Coprocessor 0	CPR[0, n, Sel] = Rt
MTC1	Move To FPR	Fs = Rt
MTHC1	Move To High Half of FPR	Fd = Rt Fs ₃₁₀
MTC2	Move To Coprocessor 2	CPR[2, n, sel] = Rt
MTHC2	Move To High Half of Coprocessor 2	CPR[2, Rd, sel] = Rt CPR[2, Rd, sel] ₃₁₀
MTHI	Move To HI	HI = Rs
MTLO	Move To LO	LO = Rs
MUL	Multiply with register write	HI LO =Unpredictable Rd = ((int)Rs * (int)Rt) ₃₁₀
MUL.fmt	Floating Point Multiply fmt = S,D	Fd = Fs * Ft
MULT	Integer Multiply	HI LO = (int)Rs * (int)Rd
MULTU	Unsigned Multiply	HI LO = (uns)Rs * (uns)Rd
NEG.fmt	Floating Point Negate fmt = S,D	Fd = neg(Fs)

Table 1824KEfTM Core Instruction Set (Continued)

Instruction	Description	Function
NMADD.fmt	Floating Point Negative Multiply Add fmt = S,D	Fd = neg(Fs * Ft + Fr)
NMSUB.fmt	Floating Point Negative Multiply Subtract fmt = S,D	Fd = neg(Fs * Ft - Fr)
NOP	No Operation (Assembler idiom for: SLL r0, r0, r0)	
NOR	Logical NOR	$Rd = \sim (Rs Rt)$
OR	Logical OR	Rd = Rs Rt
ORI	Logical OR Immediate	Rt = Rs Immed
PREF	Prefetch	Load Specified Line into Cache
PREFX	Prefetch Indexed	Load Specified Line into Cache
RDHWR	Read Hardware Register	Allows unprivileged access to registers enabled by HWREna register
RDPGPR	Read GPR from Previous Shadow Set	Rt = SGPR[SRSCtl _{PSS} , Rd]
RECIP.fmt	Floating Point Reciprocal Approximation fmt = S,D	Fd = recip(Fs)
RESTORE	Restore registers and deallocate stack frame (MIPS16 only)	See Architecture Reference Manual
ROTR	Rotate Word Right	$Rd = Rt_{sa-10} Rt_{31sa}$
ROTRV	Rotate Word Right Variable	$Rd = Rt_{Rs-10} Rt_{31Rs}$
ROUND.L.fmt	Floating Point Round to Long Fixed Point fmt = S,D	Fd = convert_and_round(Fs)
ROUND.W.fmt	Floating Point Round to Word Fixed Point fmt = S,D	Fd = convert_and_round(Fs)
RSQRT.fmt	Floating Point Reciprocal Square Root Approximation fmt = S,D	Fd = rsqrt(Fs)
SAVE	Save registers and allocate stack frame (MIPS16 only)	See Architecture Reference Manual
SB	Store Byte	(byte)Mem[Rs+offset] = Rt
SC	Store Conditional Word	<pre>if LL = 1 mem[Rs+offset] = Rt Rt = LL</pre>
SDBBP	Software Debug Break Point	Trap to SW Debug Handler
SDC1	Store Doubleword from Floating Point	<pre>memory[base+offset] = Ft</pre>
SDC2	Store Doubleword from Coprocessor 2	<pre>Mem[Rs+offset] = CPR[2,Rt]</pre>

Table 18	24KEf TM Core Instruction Set (Continued)
Table 10	24KLi Cole instruction Set (Continued)

Instruction	Description	Function
SDXC1	Store Word Indexed from Floating Point	<pre>memory[base+index] = Fs</pre>
SEB	Sign Extend Byte	Rd = (byte)Rs
SEH	Sign Extend Half	Rd = (half)Rs
SH	Store Half	(half)Mem[Rs+offset] = Rt
SLL	Shift Left Logical	Rd = Rt << sa
SLLV	Shift Left Logical Variable	Rd = Rt << Rs[4:0]
SLT	Set on Less Than	<pre>if (int)Rs < (int)Rt Rd = 1 else Rd = 0</pre>
SLTI	Set on Less Than Immediate	<pre>if (int)Rs < (int)Immed Rt = 1 else Rt = 0</pre>
SLTIU	Set on Less Than Immediate Unsigned	<pre>if (uns)Rs < (uns)Immed Rt = 1 else Rt = 0</pre>
SLTU	Set on Less Than Unsigned	<pre>if (uns)Rs < (uns)Immed Rd = 1 else Rd = 0</pre>
SQRT.fmt	Floating Point Square Root fmt = S,D	Fd = sqrt(Fs)
SRA	Shift Right Arithmetic	Rd = (int)Rt >> sa
SRAV	Shift Right Arithmetic Variable	Rd = (int)Rt >> Rs[4:0]
SRL	Shift Right Logical	Rd = (uns)Rt >> sa
SRLV	Shift Right Logical Variable	Rd = (uns)Rt >> Rs[4:0]
SSNOP	Superscalar Inhibit No Operation	NOP
SUB	Integer Subtract	Rt = (int)Rs - (int)Rd
SUB.fmt	Floating Point Subtract fmt = S,D	Fd = Fs - Ft
SUBU	Unsigned Subtract	Rt = (uns)Rs - (uns)Rd
SUXC1	Store Doubleword Indexed Unaligned from Floating Point	<pre>memory[(base+index)psize- 13] = Fs</pre>
SW	Store Word	Mem[Rs+offset] = Rt
SWC1	Store Word From Floating Point	Mem[Rs+offset] = Fs
SWC2	Store Word From Coprocessor 2	<pre>Mem[Rs+offset] = CPR[2,Rt]₃₁₀</pre>

 Table 18
 24KEfTM Core Instruction Set (Continued)

Instruction	Description	Function	
SWL	Store Word Left	See Architecture Reference Manual	
SWR	Store Word Right	See Architecture Reference Manual	
SWXC1	Store Word Indexed to Floating Point	memory[base+index] = Fs	
SYNC	Synchronize	See Software User's Manual	
SYNCI	Synchronize Caches to Make Instruction Writes Effective	Fore D-cache writeback and I-cache invalidate on specified address	
SYSCALL	System Call	SystemCallException	
TEQ	Trap if Equal	if Rs == Rt TrapException	
TEQI	Trap if Equal Immediate	if Rs == (int)Immed TrapException	
TGE	Trap if Greater Than or Equal	if (int)Rs >= (int)Rt TrapException	
TGEI	Trap if Greater Than or Equal Immediate	if (int)Rs >= (int)Immed TrapException	
TGEIU	Trap if Greater Than or Equal Immediate Unsigned	if (uns)Rs >= (uns)Immed TrapException	
TGEU	Trap if Greater Than or Equal Unsigned	if (uns)Rs >= (uns)Rt TrapException	
TLBWI	Write Indexed TLB Entry	See Software Users Manual	
TLBWR	Write Random TLB Entry	See Software Users Manual	
TLBP	Probe TLB for Matching Entry	See Software Users Manual	
TLBR	Read Index for TLB Entry	See Software Users Manual	
TLT	Trap if Less Than	if (int)Rs < (int)Rt TrapException	
TLTI	Trap if Less Than Immediate	if (int)Rs < (int)Immed TrapException	
TLTIU	Trap if Less Than Immediate Unsigned	if (uns)Rs < (uns)Immed TrapException	
TLTU	Trap if Less Than Unsigned	if (uns)Rs < (uns)Rt TrapException	
TNE	Trap if Not Equal	if Rs != Rt TrapException	
TNEI	Trap if Not Equal Immediate	if Rs != (int)Immed TrapException	
TRUNC.L.fmt	Floating Point Truncate to Long Fixed Point	Fd = convert_and_round(Fs)	
TRUNC.W.fmt	Floating Point Truncate to Word Fixed Point	ng Point Truncate to Word Fixed Point Fd = convert_and_round(Fs)	

Table 18	24KEf TM Core Instruction Set	(Continued)
10010 10	2 HE Core monuetion bet	(Commaca)

Instruction	Description	Function	
WAIT	Wait for Interrupts	Stall until interrupt occurs	
WRPGPR	Write to GPR in Previous Shadow Set	SGPR[SRSCtl _{PSS} , Rd] = Rt	
WSBH	Word Swap Bytes Within HalfWords	$\begin{array}{l} \mbox{Rd} = \mbox{Rt}_{2316} \ \ \mbox{Rt}_{3124} \ \\ \mbox{Rt}_{70} \ \ \mbox{Rt}_{158} \end{array}$	
XOR	Exclusive OR	Rd = Rs ^ Rt	
XORI	Exclusive OR Immediate	Rt = Rs ^ (uns)Immed	
ZEB	Zero extend byte (MIPS16 only)	Rt = (ubyte) Rs	
ZEH	Zero extend half (MIPS16 only)	Rt = (uhalf) Rs	

Table 18 24KEfTM Core Instruction Set (Continued)

External Interface Signals

This section describes the signal interface of the 24KEf microprocessor core.

The pin direction key for the signal descriptions is shown in Table 19 below.

The 24KEf core signals are listed in Table 20 below. Note that the signals are grouped by logical function, not by expected physical location. All signals, with the exception of *EJ_TRST_N*, are active-high signals. *EJ_DINT* and *SI_NMI* go through edge-detection logic so that only one exception is taken each time they are asserted.

Table 19 24KEf [™] Core Signal Direction Key	Table 19	24КЕf™ Со	re Signal Dire	ction Key
---	----------	-----------	----------------	-----------

Dir	Description
Ι	Input to the 24KEf core sampled on the rising edge of the appropriate CLK signal.
0	Output of the 24KEf core, unless otherwise noted, driven at the rising edge of the appropriate CLK signal.
А	Asynchronous inputs that are synchronized by the core.
S	Static input to the 24KEf core. These signals are normally tied to either power or ground and should not change state while <i>SI_Reset</i> is deasserted.
SO	Static output from the 24KEf core.

Signal Name	Туре	Description		
System Interface				
Clock Signals:				
SI_ClkIn	Ι	Clock Input.		

Table 20	24KEf TM Core Signal Descriptions (Continued)	
----------	--	--

Signal Name	Туре	Description				
		Signal indicating phase and frequency relationships between <i>SI_ClkIn</i> and the domain. The width of this pulse is related to an <i>SI_ClkIn</i> period.				
	Note that no direct OCP clock input is present on the core. Instead, all bus inter clocked with the high-speed core clock, and the <i>SI_OCPSync</i> signal is used to inputs are sampled or outputs are enabled. The pattern for various OCP-to-co is shown in the table below, assuming the pattern starts from the point where the of both clocks are aligned:			clock, and the <i>SI_OCPSync</i> signal is used to indicate when e enabled. The pattern for various OCP-to-core clock ratios		
			Clock Ratio	Sync Pattern		
SI_OCPSync	I		1:1	111		
			1:1.5	110 110		
			1:2	1010		
			1:2.5	01010 01010		
			1:3	010 010		
			1:3.5	0010010 0010010		
			1:4	0010 0010		
			1:5	00010 00010		
SI_OCPReSyncReq	A	SI_OCPRatiol	Lock will be deass	erted. The system can then change the ratio. Once the new n established, <i>SI_OCPReSyncReq</i> can be deasserted.		
SI_OCPReSyncReq	A	generating or a SI_OCPRatio	accepting new tran			
SI_OCPRatioLock	0	Indicates that the core has locked onto a pattern on <i>SI_OCPSync</i> . Deassertion is acknowledgement of a resync request (<i>SI_OCPReSyncReq</i>)				
SI_ClkOut	0	Reference Clock for external use. This clock signal provides a reference for deskewing any clock insertion delay created by the internal clock buffering in the core.				
Reset Signals:						
SI_NMI	A	Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sampled asserted (high) one clock after being sampled deasserted, an NMI is posted to the core.				
SI_Reset	А	Reset Signal. Causes a Reset Exception in the core.				
Power Management Signals:	1	1				
SI_ERL	0	This signal represents the state of the ERL bit (2) in the CP0 <i>Status</i> register and indicates the error level. The core asserts <i>SI_ERL</i> whenever a Reset, CacheError, or NMI exception is taken.				
SI_EXL	0	This signal represents the state of the EXL bit (1) in the CPO <i>Status</i> register and indicates the exception level. The core asserts <i>SI_EXL</i> whenever any exception other than a Reset, Cache Error, NMI, or Debug exception is taken.				
SI_RP	0		This signal represents the state of the RP bit (27) in the CP0 <i>Status</i> register. Software can write this bit to indicate that a reduced power mode may be entered.			
SI_Sleep	0	This signal is asserted by the core whenever the WAIT instruction is executed. The assertion of this signal indicates that the clock has stopped and that the core is waiting for an interrupt.				

Signal Name	Туре	Description			
Interrupt Signals:					
SI_EICPresent	S	Indicates whether an external interrupt controller is present. Value is visible to software in the $Config3_{VEIC}$ register field.			
SI_EISS[3:0]	I	General purpose register shadow set number to be used when servicing an interrupt in EIC interrupt mode.			
SI_IAck	0	Interrupt acknowledge indication for use in external interrupt controller mode. This signal is active for a single <i>SI_ClkIn</i> cycle when an interrupt is taken. When the processor initiate the interrupt exception, it loads the value of the <i>SI_Int[5:0]</i> pins into the <i>Cause_{RIPL}</i> field (overlaid with <i>Cause_{IP7.IP2}</i>), and signals the external interrupt controller to notify it that the current interrupt request is being serviced. This allows the controller to advance to anothe pending higher-priority interrupt, if desired.			
		Active high Interrupt pins. These signals are driven by external logic and when asserted indicate an interrupt exception to the core. The interpretation of these signals depends on the interrupt mode in which the core is operating; the interrupt mode is selected by software.			
		The <i>SI_Int</i> signals go through synchronization logic and can be asserted asynchronously to <i>SI_ClkIn</i> . In External Interrupt Controller (EIC) mode, however, the interrupt pins are interpreted as an encoded value, so they must be asserted synchronously to <i>SI_ClkIn</i> to guarantee that all bits are received by the core in a particular cycle.			
		The interrupt pins are level sensitive and should remain asserted until the interrupt has been serviced.			
		In Release 1 Interrupt Compatibility mode:			
		• All 6 interrupt pins have the same priority as far as the hardware is concerned.			
SI_Int[5:0]	I/A	• Interrupts are non-vectored.			
51_111[5:0]	1/2 4	In Vectored Interrupt (VI) mode:			
		• The <i>SI_Int</i> pins are interpreted as individual hardware interrupt requests.			
		• Internally, the core prioritizes the hardware interrupts and chooses an interrupt vector.			
		In External Interrupt Controller (EIC) mode:			
		• An external block prioritizes its various interrupt requests and produces a vector number of the highest priority interrupt to be serviced.			
		• The vector number is driven on the <i>SI_Int</i> pins, and is treated as a 6-bit encoded value in the range of 063.			
		• When the core starts the interrupt exception, signaled by the assertion of <i>SI_IAck</i> , it loads the value of the <i>SI_Int[5:0]</i> pins into the <i>Cause_{RIPL}</i> field (overlaid with <i>Cause_{IP7.IP2}</i>). The interrupt controller can then signal another interrupt.			
SI_IPL[5:0]	0	Current interrupt priority level from the <i>Cause_{IPL}</i> register field, provided for use by an external interrupt controller. This value is updated whenever <i>SI_IAck</i> is asserted.			
SI_IPPCI[2:0]	S	Indicates the <i>SI_Int</i> hardware interrupt pin that the performance counter interrupt pin (SI_PCInt) is combined with external to the core. The value of this bus is visible to software in the <i>IntCtl_{IPPCI}</i> register field.			
SI_IPTI[2:0]	S	Indicates the <i>SI_Int</i> hardware interrupt pin that the timer interrupt pin (<i>SI_TimerInt</i>) is combined with external to the core. The value of this bus is visible to software in the $IntCtl_{IPTI}$ register field.			

Table 20	24KEf™	Core Signal	Descriptions	(Continued)
----------	--------	-------------	--------------	-------------

Signal Name	Туре	Description			
		Performance Counter Interrupt. Asserted when bit 31 of any of the performance counters is set. This hardware pin represents the state of the $Cause_{PC}$ register field			
		For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:			
SI_PCInt	Ο	In order for the core to take a performance counter interrupt, the <i>SI_PCInt</i> signal needs to be brought back into the core on one of the six <i>SI_Int</i> interrupt pins in a system-dependent manner. Traditionally, this has been accomplished by muxing <i>SI_PCInt</i> with <i>SI_Int[5]</i> . Exposing <i>SI_PCInt</i> as an output allows more flexibility for the system designer. Performance counter interrupts can be muxed or ORed into one of the interrupts, as desired in a particular system. The <i>SI_Int</i> hardware interrupt pin with which the <i>SI_PCInt</i> signal is merged is indicated via the <i>SI_IPPCI</i> static input pins.			
		For External Interrupt Controller (EIC) mode:			
		The <i>SI_PCInt</i> signal is provided to the external interrupt controller, which then prioritizes the performance counter interrupt with all other interrupt sources, as desired. The controller then encodes the desired interrupt value on the <i>SI_Int</i> pins. Since <i>SI_Int</i> is usually encoded, the <i>SI_IPPCI</i> pins are not meaningful in EIC mode.			
SI_SWInt[1:0]	0	Software interrupt request. These signals represent the value in the <i>IP[1:0]</i> field of the <i>Cause</i> register. They are provided for use by an external interrupt controller.			
SI_TimerInt	0	Timer interrupt indication. This signal is asserted whenever the <i>Count</i> and <i>Compare</i> registers match and is deasserted when the <i>Compare</i> register is written. This hardware pin represents the value of the <i>Cause_{TI}</i> register field. Like SI_PCInt, this signal should be brought back into the core via one of the SI_Int pins. For compatibility or vectored interrupt mode, SI_IPTI should indicate which interrupt pin it has been merged with.			
Configuration Inputs:	•				
		Controls the ordering of double-words within a bursted read request on the OCP interface. The value of this pin is visible in the BM field of the <i>Config0</i> register.			
SI_SBlock	S	SI_SBlock Burst Order			
_		0 Sequential			
		1 Subblock			
SI_CPUNum[9:0]	S	Unique identifier to specify an individual core in a multi-processor system. The hardware value specified on these pins is available in the CPUNum field of the <i>EBase</i> register, so it can be used by software to distinguish a particular processor. In a single processor system, this value should be set to zero.			
		Indicates the base endianness of the core. The value of this pin is visible in the BE field of the <i>Config0</i> register.			
SI_Endian	S	EB_Endian Base Endian Mode			
		0 Little Endian			
	1	1 Big Endian			

			Jore Signal Descrip			
Signal Name	Туре			Description		
		external interfac	ce transactions. This e	the core to only generate certain by ases connection to some existing b ield of the <i>Config0</i> register.		
SI_SimpleBE	S		SI_SimpleBE	Byte Enable Mode]	
SI_SIMPIEBE			0	All BEs allowed		
			1	Naturally aligned bytes, halfwords, words, and doublewords only		
SI_DMA_Priority	I	Force the DMA	to have a higher prior	rity		
SI_IDMA_Priority	Ι	DMA request sl	DMA request should be higher priority than core requests			
SI_Ibs[3:0]	0	This signal reflects the state of the BS bits[3:0] in the Instruction Breakpoint Status (IBS) register when EJTAG hardware breakpoint for instruction is implemented.				
SI_Dbs[1:0]	0	This signal reflects the state of the BS bits[1:0] in the Data Breakpoint Status (IBS) register when EJTAG hardware breakpoint for data is implemented.				
L2 Interface : Static inputs a for performance counters rel			Config2 register if a Le	vel 2 cache is present. Additional i	nputs are provided	
		Encoded line size of the external L2 cache. The value of these pins is visible in the SL field of the <i>Config2</i> register. Note that a value of 0 indicates that no L2 cache is present.				
			Encoding	L2 Line Size (bytes)	7	
			0	No L2 cache present		
			1	4		
			2	8		
L2_LineSize[3:0]	S		3	16]	
			4	32]	
			5	64		
			6	128		
			7	256		
			8-15	Reserved		
			8-15	Reserved		

Table 20	24KEf [™] Core Signal Description	(Continued)
----------	--	-------------

Signal Name	Туре		Description				
		Encoded number of L2 sets per way. The value of these pins is visible in the SS field of the <i>Config2</i> register.					
		Encoding	g L2 Sets Per W	ay			
		0	64				
		1	128				
		2	256				
L2_Sets[3:0]	S	3	512				
		4	1024				
		5	2048				
		6	4096				
		7	8192				
		8-15	Reserved				
		Encoded associativity of the L2 of the <i>Config2</i> register.	cache. The value of these pins	is visible in the SA field of			
		Encoding	g L2 Associativi	ty			
		0	Direct mapped	-			
		1	2				
		2	3				
L2_Assoc[3:0]	S	3	4				
		4	5				
		5	6				
		6	7				
		7	8				
		8-15	Reserved				
L2_PCWB	I	Performance counter input. Indic clock width) per L2 WB event. T 0 Count.	ates the number of L2 write back the count is visible in CP0 <i>Per</i>	acks (WB). One pulse (OCP formance Counter Register			
L2_PCAcc	Ι	Performance counter input. Indic width) per L2 access event. The <i>Count</i> .					
L2_PCMiss	Ι	Performance counter input. Indic width) per L2 miss event. The co <i>1 Count.</i>	cates the number of L2 misses ount is visible in CP0 <i>Performa</i>	One pulse (OCP clock unce Counter Register 0 and			
L2_PCMissCy	I	Performance counter input. Indicates the number of cycles the L2 is held due to misses. Note that this is not an <i>event</i> unlike <i>L2_PCWB</i> , <i>L2_PCAcc</i> , or <i>L2_PCMiss</i> . 1 pulse (OCP clock width) per L2 miss cycle. Also note that the count is in terms of OCP cycles and not <i>SI_ClkIn</i> clock cycles. This needs to be factored in while reading this counter. Note: the count related to this signal is not currently visible in a CP0 <i>Performance Counter Register</i> .					
		These 4 inputs can be redefined i contain the number of OCP clock		. The count will in this case			
OCP Master System Inte	erface. These	ignals connect to the OCP Standa	rd Master Interface.				

Table 20	24KEf [™] Core Signal Descriptions	(Continued)
----------	---	-------------

Signal Name	Туре	Description																
		OCP command bus, indicates the type of transaction requested. Only some encoding a used and they are set in concert with the values on OC_MReqInfo and OC_MAddrSpathe encoding used by the 24KEf core are shown in the following table:																
		Encoding	Command	Mnemonic	Description													
		0	Idle	IDLE	No transaction													
OC_MCmd[2:0]	Ο	0	1	Write	WR	Used for data write and L2 CACHE write or invalidate												
																2	Read	RD
		3-7	Unused	-	Not used on 24KEf core													

Table 20	24KEf [™]	Core Signal	Descriptions	(Continued)

Signal Name	Туре	pe Description					
		OCP co	mmand bus exte	nsion.			
		<i>For transactions other than SYNC and CACHE, the OC_MReqInfo</i> [2:0] field encodes the cacheability attributes for a transaction; it uses the same encoding as the CCA field described in Table 10 on page 16. <i>OC_MReqInfo</i> [3] indicates that the transaction is due to a SYNC instruction; when this bit is high, the lower bits [2:0] indicate an uncached CCA type.					
		The encoding of the <i>OC_MReqInfo</i> field for all transactions other than CACHE is summarized in the following sub-table:					
		Encoding for all transactions other than CACHE					
		г	Command Information				
			0	cacheable, noncoherent, WT, NWA			
			1	reserved			
			2	uncached			
			3	cacheable, noncoherent, WB, WA			
			4-6	reserved			
			7	uncached accelerated			
			8-9	reserved			
			10	SYNC with uncached CCA			
			11-15				
OC MBaghta[2:0]				reserved			
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a Ca MReqInfo are ide on (See the MIPS coding is shown ed when one of t	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transaction is summarial for the CACHE transaction is summarial for the CACHE transaction is summarial.	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a C/ MReqInfo are id- on (See the MIPS coding is shown ed when one of t coding of the OC ng sub-table:	ACHE transaction to an off-core L2/L3 cache, then the lo entical to bits 20:18 of the CACHE opcode and indicate t 32 24K Processor Core Family Software User's Manual fo in the sub-table below. Note that a L2/L3 CACHE transa- he bits of MAddrSpace[1:0] are set to 1. "_MReqInfo field for the CACHE transaction is summari." Encoding for CACHE transaction	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	Ansaction is a CA MReqInfo are ide on (See the MIPS coding is shown ed when one of t coding of the OC ng sub-table: Encoding	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transaction is summariant. <i>MReqInfo</i> field for the CACHE transaction is summariant. Encoding for CACHE transaction Command Information	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a C <i>A</i> <i>MReqInfo</i> are id- on (See the <i>MIPS</i> coding is shown ed when one of t coding of the <i>OC</i> ng sub-table: <u>Encoding</u> 0	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transache bits of MAddrSpace[1:0] are set to 1. "_MReqInfo field for the CACHE transaction is summariced by the CACHE transaction is summariced by the CACHE transaction is summariced by the CACHE transaction by the CACHE transaction by the cache bits of Command Information bits writeback Invalidate/ Index Invalidate/	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	Ansaction is a CA MReqInfo are ide on (See the MIPS coding is shown ed when one of t coding of the OC ng sub-table: Encoding 0 1	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transaction be bits of MAddrSpace[1:0] are set to 1. "	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a CA MReqInfo are idd on (See the MIPS) coding is shown ed when one of t coding of the OC ng sub-table: Encoding 0 1 2	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transache bits of MAddrSpace[1:0] are set to 1. "_MReqInfo field for the CACHE transaction is summariced by the cache transaction is summariced by the cache transaction index Writeback Invalidate/ Index Invalidate index Load Tag index Store Tag	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a CA MReqInfo are ide on (See the MIPS coding is shown ed when one of t coding of the OC ng sub-table: Encoding 0 1 2 3	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transaction is sub-table below. Note that a L2/L3 CACHE transaction is summaried by the bits of MAddrSpace[1:0] are set to 1. "	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a CA MReqInfo are idd on (See the MIPS coding is shown ed when one of t coding of the OC ng sub-table: Encoding 0 1 2 3 4	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual fin the sub-table below. Note that a L2/L3 CACHE transaction be bits of MAddrSpace[1:0] are set to 1. "_MReqInfo field for the CACHE transaction is summariand for CACHE transaction is summariand for the CACHE transaction is summariand for the CACHE transaction index Writeback Invalidate/ Index Invalidate index Load Tag index Store Tag reserved hit invalidate	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a CA MReqInfo are ide on (See the MIPS coding is shown ed when one of the coding of the OC ng sub-table: Encoding 0 1 2 3 4 5	ACHE transaction to an off-core L2/L3 cache, then the loc entical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual for in the sub-table below. Note that a L2/L3 CACHE transa- the bits of MAddrSpace[1:0] are set to 1. "_MReqInfo field for the CACHE transaction is summaric Encoding for CACHE transaction index Writeback Invalidate/ Index Invalidate index Load Tag index Store Tag reserved hit invalidate hit writeback invalidate/ hit invalidate	the type of for details). action is		
OC_MReqInfo[3:0]	0	of OC_A operation This end identified The end	ansaction is a CA MReqInfo are idd on (See the MIPS coding is shown ed when one of t coding of the OC ng sub-table: Encoding 0 1 2 3 4	ACHE transaction to an off-core L2/L3 cache, then the locentical to bits 20:18 of the CACHE opcode and indicate to 32 24K Processor Core Family Software User's Manual fin the sub-table below. Note that a L2/L3 CACHE transaction be bits of MAddrSpace[1:0] are set to 1. "_MReqInfo field for the CACHE transaction is summariand for CACHE transaction is summariand for the CACHE transaction is summariand for the CACHE transaction index Writeback Invalidate/ Index Invalidate index Load Tag index Store Tag reserved hit invalidate	the type of for details). action is		

Signal Name	Туре				Description		
		operatio	L2/L3 Address Space indicator. When the 24KEf core is issuing an L2 or an L3 CACHE operation, the corresponding bit (Bit [0] for L2, and Bit [1] for L3) is asserted. It indicates to the system that this OCP command is targeted to the address space of the L2 or L3 Cache.				
		The encoding of this field is summarized in the following table:					
OC MAdduSmass[1:0]	0	Γ	Encoding		Address Space		
OC_MAddrSpace[1:0]			0	Normal	address space		
			1	L2 addr	ess space		
			2	L3 addr	ess space		
			3	reserved			
OC_MAddr[31:0]	0	the read OC_MA carries t	(OC_MByteEn) ddrSpace[1:0] is he cache line add s type of burst se	or write not zero lress (or equence.	ignificant bits are statically driven to 0 but are d $(OC_MDataByteEn)$ byte enable fields. When (to indicate a CACHE operation), then OC_MAa the cache line index for Indexed CACHE ops). The 24KEf core can only generate two possible c input, as shown in the following table:	ldr[31:5	
OC_MBurstSeq[2:0]			Encoding		Burst Sequence		
	0		2		ial: Critical dword first, with linear wrapping for ent beats.		
			4		ck: Critical dword first, with increment/decrement for ent beats		
			0-1,3,5-7	Unused	by 24KEf core		
		the outst a non-re	tanding transaction	on, as sho of the OC on page 5	oding of this field is determined by the BIU buffe own in the following table. Note: the 24KEf core P Tag semantics. For more explanation, see "O 9. Tag Allocation	e assume	
			0	8	From Read buffer 0		
			1		From Read buffer 1		
OC_MTagID[2:0]	0		2		From Read buffer 2		
			3		From Read buffer 3		
			4		From Fetch buffer 0		
			5		From Fetch buffer 1		
			6		SYNC		
			7		WR, CACHE-RD, CACHE-WR		
OC_MBurstPrecise	SO	Indicate fixed at	s whether the but 4 beats, so this p	rst length in is stati	is precise. In the 24KEf core, burst lengths are cally set to 0x1.	always	
OC_MBurstSingleReq	SO	Indicate there is	s whether there is always a single c	s a single	request for all data transfers in a burst. In the 24 request so this pin is statically set to 0x1.	KEf core	

Signal Name	Туре		Description				
		Number of 64b data trans	fers. Only two values are possible in the 24KEf core.				
		Encoding	Number of Transfers				
OC_MBurstLength[2:0]	0	1	1, single transfer				
_ 01 J		4	4-beat burst				
		others	Unused by 24KEf core				
		Byte enables for reads. In each bit in the OC_MByte table: OC_MByteEn signal	cludes data alignment, endianness and address. The correlation <i>En</i> field to the returned read data bytes is shown in the follow Requested byte to be returned on <i>OC_SData</i> bus	n of ving			
		[0]	[7:0]				
OC MByteFr [7.0]	0	[1]	[15:8]				
OC_MByteEn[7:0]		[2]	[23:16]				
		[3]	[31:24]				
		[4]	[39:32]				
		[5]	[47:40]				
		[6]	[55:48]				
		[7]	[63:56]				
		each bit in the OC_MDate	cludes data alignment, endianness and address. The correlation aByteEn field to the write data bytes is shown in the followin f core does not use OC_MByteEn for transferring byte enable er OCP masters do.	g			
		OC_MDataByteEn signal	Valid write data byte on <i>OC_MData</i> bus				
		[0]	[7:0]				
OC_MDataByteEn[7:0]	0	[1]	[15:8]				
		[2]	[23:16]				
		[3]	[31:24]				
		[4]	[39:32]				
		[5]	[47:40]				
		[6]	[55:48]				
		[7]	[63:56]				
OC_MDataValid	0	Valid write data on <i>OC_N</i>	IData bus.				
OC_MDataTagID[2:0]	0	Write data tag identifier (only valid value in the 24	for out of order returns). Per the encoding for OC_MTagID , t KEf core is $0x7$.	he			
OC_MDataLast	0	Last valid data in a write	burst.				
OC_MReset_n	0	Active low output that ind but also indicates that the	licates that the core is in reset. Part of the OCP master interfa OCP slave interfaces for SPRAM DMA are in reset.	ice,			

Signal Name	Туре	Description						
OC_SData[63:0]	I	Returned read data to core.						
OC_STagID[2:0]	I	Return transaction tag ID. See OC_MTagID for encoding.						
			Valid response from system controller. The encoding recognized by the 24KEf core are shown in the following table					
		Encoding	Command	Mnemonic	Description			
OC_SResp[1:0]	I	0	No response	NULL	No response			
		1	Data valid / accept	DVA	Normal completion response			
		2	Reserved	-	Should not be used on 24KEf core			
		3	Response error	ERR	Signals bus error exception			
OC_SRespLast	Ι	Marks last data in	read burst.					
OC_SCmdAccept	I	System controller	notifies the 24KEf c	core that the com	mand is accepted.			
OC_SDataAccept	Ι	System Controller	notifies the 24KEf	core that the writ	e data is accepted.			
CorExtend/MDU Interfac the <i>MIPS32</i> TM 24 <i>K</i> TM <i>Pro</i> 5	ce: On 24KEt Series™ Cort	f Pro cores, there is a <i>ExtendTM Instruction</i>	an external interface Integrator's Guide	to a combined C for more details	orExtend and MDU block. Refer to on these signals.			
Coprocessor 2 Interface								
CP2_gfclk	0	Free running clock	k for coprocessor 2.	Same as SI_ClkI	n			
CP2_gclk	0	Gated coprocessor	r 2 clock					
CP2_gscanenable	0	Scanenable for co	processor 2 module.	This is same as	gscanenable.			
Dispatch: These signals ar	e used to tran	sfer an instruction f	rom the 24KEf core	to the COP2 cop	rocessor.			
CP2_ir_0[31:0]	0	Coprocessor Instr Valid in the cycle	uction Word. before CP2_as_0, C	P2_ts_0 or CP2_	fs_0.			
CP2_irenable_0	0	Enable Instruction When deasserted,	n Registering. no instruction strob	es will be asserte	d in the following cycle.			
CP2_as_0	0	Coprocessor 2 Art	ithmetic Instruction	Strobe.				
CP2_abusy_0	I	Coprocessor 2 Arithmetic Busy.						
CP2_ts_0	0	Coprocessor 2 To	Strobe.					
CP2_tbusy_0	Ι	To Coprocessor 2	Busy.					
CP2_fs_0	0	Coprocessor 2 Fro	om Strobe.					
CP2_fbusy_0	I	From Coprocessor 2 Busy.						
CP2_endian_0	0		Big Endian Byte Ordering. Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0.					
CP2_inst32_0	SO	Valid the cycle be	MIPS32 Compatibility Mode - Instructions. Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0. Tied high in 24K.					
CP2_kd_mode_0	0	Kernel/Debug mo Valid the cycle bej	de. When asserted, t fore CP2_as_0, CP2	the processor is in <u>fs_0 or CP2_ts</u>	n kernel or debug mode. _0 <i>is asserted</i> .			

Table 20	24KEf [™] Core Signa	al Descriptions	(Continued)
----------	-------------------------------	-----------------	-------------

Туре	Description
se signals a	re used when data is sent from the 24KEf core to the COP2 coprocessor, as part of completing
0	Coprocessor To Data Strobe.
SO	Coprocessor To Order. No out-of-order data to COP2.
	Forced to 000.
I	To Coprocessor Data Out-of-order Limit. <i>Being ignored.</i>
0	To Coprocessor Data.
These signa sor instruct	Is are used when data is sent to the 24KEf core from the COP2 coprocessor, as part of ion.
Ι	Coprocessor From Data Strobe.
Ι	Coprocessor From Order. No out-of-order support in 24K. <i>Expected to be 000 in 24K.</i>
	From Coprocessor Data Out-of-order Limit.
SO	No out-of-order data to COP2. Forced to 000 in 24K.
Ι	From Coprocessor Data.
k: These sig d for BC2 i	gnals are used to report the result of a condition code check to the 24KEf core from the COP2 nstructions.
Ι	Coprocessor Condition Code Check Strobe.
	Coprocessor Condition Code Check.
I	When asserted, the branch should take the branch. When deasserted, the branch should not take the branch.
e used by t	he COP2 coprocessor to report exception for each instruction.
Ι	Coprocessor Exception Strobe.
Ι	Coprocessor Exception. Valid when CP2_excs_0 is asserted.
I	Coprocessor Exception Code. Valid when both CP2_excs_0 and CP2_exc_0 are asserted. 01010: RI (This will trigger RI in core pipeline.) 10000: Available for Coprocessor specific exception
	10010: C2E exception.All others: Reserved
are used by	the 24KEf core to signal nullification of each instruction to the COP2 coprocessor.
0	Coprocessor Null Strobe.
0	Nullify coprocessor instruction.
by the 24K	Ef core to signal killing of each instruction to the COP2 coprocessor.
0	Coprocessor Kill Strobe.
	I So I O SO I O I O I I I SO I

Signal Name	Туре	Description
		Kill Coprocessor Instruction.
		• 00 / 01: Instruction is not killed. OK for commit.
CP2_kill_0[1:0]	0	• 10: Instruction is killed not due to CP2_exc.
		• 11: Instruction is killed due to CP2_exc.
Miscellaneous COP2 signals	5:	
CP2_reset	0	Coprocessor Reset. Asserted when a reset is performed by the integer pipeline.
CP2_present	S	COP2 Present.
CP2_idle	I	Coprocessor Idle. Asserted when the coprocessor logic is idle. Enables the processor to go into sleep mode and shut down the clock.
CP2_perfcnt_event	I	Implementation coprocessor performance counter event.
CP2_tx32	S	COP2 32-bit Transfers. When this signal is asserted, the integer unit must cause an RI exception for 64-bit COP2 TF instructions.
Data scratchpad RAM (DSI	PRAM) In	terface:
-		ata scratchpad RAM array to be accessed independent of the data cache.
Note: In order to achieve sing requires more careful timing		cess, the ScratchPad interface is not fully registered, unlike most other core interfaces. This ons.
SP_gfclk	0	DSPRAM free running clock. This signal follow SI_ClkIn
SP_gclk	0	DSPRAM gated clock. This clock is shutdown when the processor is in sleep mode and top level clock gating is enabled.
SP_greset_pre	0	This reset signal should be registered within the DSPRAM module before use. The registered version of this signal follows the reset seen by rest of the core logic.
SP_gscanenable	0	Scanenable signal for DSPRAM module. This signal follows the gscanenable to the core.
SP_parity_en	0	DSPRAM parity enable
SP_sleep_req_xx	0	Asserted when entering sleep mode, the clock will be killed in the next cycle
SP_wait_pd_xx	0	A WAIT instruction pending in the pipeline
SP_tag_rd_ag	0	DSPRAM Tag Read Strobe. Asserted when a read on DSPRAM tag register (either base address or size register) is performed
SP_tag_wr_ag	0	DSPRAM Tag Write Strobe. Asserted when a write to DSPRAM tag register (either base address or size register) is performed
SP_tag_sel_ag	0	DSPRAM Tag read/write selection (0: base address register, 1: size register)
SP_tag_wdata_ag[31:11]	0	DSPRAM Tag write data. It is valid when SP_tag_wr_ag is asserted
SP_data_addr_ag[19:2]	0	Address of the SPRAM data access. This is valid during the cycle that SP_data_rd_ag or SP_data_wr_ag is asserted.
SP_data_rd_ag	0	DSPRAM data read strobe.
SP_dma_rd_ag	0	Indication that the read to DSPRAM is from a DMA request.
SP_data_wr_ag	0	DSPRAM data write strobe
SP_data_wren_ag[7:0]	0	DSPRAM Data Write mask. This is the byte enable for the write data to SPRAM. Only valid when <i>SP_data_wr_ag</i> is asserted

MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 20	24KEf™	Core Signal	Descriptions	(Continued)
----------	--------	-------------	--------------	-------------

Signal Name	Туре	Description					
SP_data_wdata_ag[63:0]	0	DSPRAM write data.					
SP_data_wpar_ag[7:0]	0	Byte parity bits for v	Byte parity bits for write data bus (SP_data_wdata_ag)				
SP_req_id_ag[2:0]	0		on from the core to the SPRAM. This if the cycle SP_data_rd_ag is asserted				
SP_core_reqpd_er	0		RAM instruction is pending. No DM all will be ignored when SI_DMA_P				
SP_mbsp_tosp_xx[n-1:0]	0	User defined variable	e width DSPRAM BIST sideband si	gnal to DSPRAM.			
SP_sp_tombsp_xx[n-1:0]	Ι	User defined variable	e width DSPRAM BIST sideband si	gnal from DSPRAM.			
SP_present	S	Presence of SPRAM	[
SP_parity_present	Ι	Indicates if parity log	gic is implemented in the DSPRAM	module			
SP_perfcnt_event	Ι	Implementation spec	cific SPRAM performance counter e	vent			
SP_ram_busy	Ι		n-pipelined multi-cycle SPRAM des ake any request in the next cycle. Any				
SP_busy_xx	I	Asserted when SPRA mode and disable the	AM is not idle. This will prevent the e clock	processor from entering the sleep			
SP_tag_rdata_xx[31:11]	Ι	DSPRAM tag read d	lata				
SP_tag_msk_xx[31:12]	I	one, the address bi	different size SPRAM Tag comp t will participate in the tag compariso SP_tag_msk_xx[31:12] 1111_1111_1111_1111_1111 1111_1111_11	arison. When the mask is zero,			
SP_data_rdata_xx[63:0]	Ι	Data return form SP single cycle access, 1	Data return form SPRAM read. It is valid the same cycle <i>SP_datavld_xx</i> is asserted. For single cycle access, read data should be returned the cycle after <i>SP_data_rd_ag</i> is asserted.				
SP_data_rpar_xx[7:0]	Ι	Byte parity of SPRAM read data (<i>SP_data_rdata_xx</i>). It is valid the same cycle <i>SP_datavld_xx</i> is asserted. For a SPRAM design where no parity is implemented, this signal is ignored.					
SP_datavld_nxt_xx	Ι	Indicates that is a va	lid return data from SPRAM for a re	ad.			
SP_data_id_xx[2:0]	I	Instruction identifica SP_datavld_xx is as	tion associated with the data returne serted.	d. This is valid the same cycle			
SP_dma_id_xx[2:0]	I	OCP TagID of a DSI SP_dma_rd_ag is as	PRAM DMA access. It is valid the s serted.	ame cycle SP_dma_wr_ag or			

Signal Name	Туре			Description			
SP_dma_addr_xx[19:3]	Ι		Index of a DSPRAM DMA request. It is valid the same cycle SP_dma_rd_ag or SP_dma_wr_ag is asserted.				
SP_dma_wdata_xx[63:0]	Ι	Write data for a DM	Write data for a DMA write request. It is valid the same cycle <i>SP_dma_wr_ag</i> is asserted.				
SP_dma_wren_xx[7:0]	Ι	Byte write enable f	or a DMA write re	equest.			
SP_dma_rd_xx	Ι	DSPRAM DMA re	ad strobe				
SP_dma_wr_xx	Ι	DSPRAM DMA w	rite strobe				
SP_dma_stallreq_xx	Ι	Stall request from s SI_DMA_Priority =		essor when there	is a DMA access and		
DSPRAM External Interfac scratchpad RAM.	e (OCP Sl	ave Interface) This s	set of interface sign	nals allows a DM	A device to access the optional d		
		OCP command bus encoding and the tr	indicating the typ ansaction type sup	be of transaction reported by the slav	equested. The following are the ve.		
		Encoding	Command	Mnemonic	Description		
OC_DMA_MCmd[2:0]	I	0	Idle	IDLE	No transaction		
	-	1	Write	WR	Used for data write		
		2	Read	RD	Used for data read		
		3-7	Unused	-	Not used on 24KEf core		
OC_DMA_MTagID[2:0]	I	Transaction tag ide	ntifier.				
OC_DMA_MAddr[31:0]	Ι	Physical address bu DSPRAM module.		ould fall in the ad	dress range programmed in the		
		byte addressed for t	ds operation. In con he read operation. I read data bytes is	The correlation of	e endianness this bus determines f each bit in the OC_DMA_MByte		
	1			silown in the ron	lowing table.		
		OC_DMA_	MByteEn	Requested byte to OC_DMA_S	be returned on		
		OC_DMA_	<i>MByteEn</i> al	Requested byte to	be returned on Data bus		
OC DMA MRwtoFn[7:0]	T	OC_DMA	MByteEn aal	Requested byte to OC_DMA_S	be returned on Data bus		
OC_DMA_MByteEn[7:0]	I	0C_DMA_ sign [0 [1 [2	MByteEn al]]]]	Requested byte to OC_DMA_S [7:0 [15:: [23:1	be returned on Data bus] 3] 6]		
OC_DMA_MByteEn[7:0]	I	0C_DMA_ sign [0 [1] [2] [3]	MByteEn nal]]]]]]	Requested byte to OC_DMA_S [7:0] [15:8] [23:1] [31:2]	be returned on <i>Data</i> bus]] 6] 4]		
OC_DMA_MByteEn[7:0]	Ι	0C_DMA_ sign [0 [1 [2 [3 [3] [4	MByteEn al]]]]]]]]]]	Requested byte to OC_DMA_S [7:0 [15:3 [23:1 [31:2 [39:3	be returned on <i>Data</i> bus]] 6] 4] 2]		
OC_DMA_MByteEn[7:0]	Ι	0C_DMA_ sign [0 [1 [2 [3] [4 [5]	MByteEn aal]]]]]]]]]]]]]	Requested byte to OC_DMA_S [7:0 [15:8 [23:1 [31:2 [39:3 [47:4	be returned on <i>Data</i> bus]]] 6] 4] 2] 0]		
OC_DMA_MByteEn[7:0]	Ι	0C_DMA_ sign [0 [1] [2 [3] [4] [5] [6]	MByteEn nal]]]]]]]]]]]]]]]]	Requested byte to OC_DMA_S [7:0] [15:8] [23:1] [31:2] [39:3] [47:4] [55:4]	be returned on <i>Data</i> bus		
OC_DMA_MByteEn[7:0]	Ι	0C_DMA_ sign [0 [1 [2 [3] [4 [5]	MByteEn nal]]]]]]]]]]]]]]]]	Requested byte to OC_DMA_S [7:0 [15:8 [23:1 [31:2 [39:3 [47:4	be returned on <i>Data</i> bus		
OC_DMA_MByteEn[7:0] OC_DMA_MDataTagID[2: 0]	I	0C_DMA_ sign [0 [1] [2 [3] [4] [5] [6]	MByteEn nal]]]]]]]]]]]]]]]]]]	Requested byte to OC_DMA_S [7:0] [15:8] [23:1] [31:2] [39:3] [47:4] [55:4]	be returned on <i>Data</i> bus		
OC_DMA_MDataTagID[2:		OC_DMA_ sign [0] [1] [2] [3] [4] [5] [6] [7]	MByteEn al]]]]]]]]]]]]]]]]]] tifier	Requested byte to OC_DMA_S [7:0 [15:8 [23:1 [31:2 [39:3 [47:4 [55:4 [63:5	be returned on <i>Data</i> bus		
OC_DMA_MDataTagID[2: 0]	I	OC_DMA_ sign [0] [1] [2] [3] [4] [5] [6] [7] Write data tag iden [6]	MByteEn nal 1 </td <td>Requested byte to OC_DMA_S [7:0 [15:8 [23:1 [31:2 [39:3 [47:4 [55:4 [63:5</td> <td>be returned on <i>Data</i> bus</td>	Requested byte to OC_DMA_S [7:0 [15:8 [23:1 [31:2 [39:3 [47:4 [55:4 [63:5	be returned on <i>Data</i> bus		

Signal Name	Туре	Description
OC_DMA_SResp[1:0]	0	Read/Write response (00=NULL, 01=VALID 11=ERR)
OC_DMA_STagID[2:0]	0	Return transaction tag ID.
OC_DMA_SData[63:0]	0	Return data read from the scratchpad RAM.
OC_DMA_SCmdAccept	0	 Flow control for commands (0=BUSY, 1=READY) The core deasserts this signal when it is not ready to accept a new command. The master has to hold the new command till it is accepted by the core. The core asserts this signal when it has accepted a new command
OC_DMA_SDataAccept	0	 Flow control for data (0=BUSY, 1=READY) The core deasserts this signal when it is not ready to accept a the data driven in <i>OC_DMA_SData</i>. The master has to hold the data till it is accepted by the core. The core asserts this signal when it has accepted the data driven in <i>OC_DMA_SData</i>
Instruction scratchpad RAM	I (ISPRA)	M) Interface:
This set of interface signals al	llows the in le cycle ac	nstruction scratchpad RAM array to be accessed independent of the instruction cache. cess, the ScratchPad interface is not fully registered, unlike most other core interfaces. This
ISP_gclk	0	Gated global clock
ISP_gfclk	0	Free-running global clock
ISP_greset_pre	0	Global reset. Must be registered prior to use
ISP_gscanenable	0	Global scanenable. Use to override local clock gating during scan.
ISP_parity_en	0	ISPRAM parity enable - used to control whether parity errors on DMA reads are reported or not.
ISP_wait_pd_xx	0	WAIT instruction has been executed and core is getting ready to go to sleep
ISP_sleep_req_xx	0	Entering sleep mode in the next cycle
ISP_core_reqpd_xx	0	There is a core access pending (stalling the DMA request)
ISP_addr_ipf[19:3]	0	Index for access.
ISP_tag_sel_ipf	0	Controls whether Size or base address register is written
ISP_rd_ipf	0	Read Strobe - both tag and data values are read
ISP_dma_rd_ipf	0	The read is a for a DMA access
ISP_tag_wr_ipf	0	Tag Write Strobe
ISP_tag_wdata_ipf[31:11]	0	Tag write data.
ISP_data_wr_ipf	0	Data Write Strobe
ISP_data_wdata_ipf[69:0]	0	Data write data (instructions + precode)
ISP_data_wpar_ipf[8:0]	0	Parity for write data
ISP_present	I	Presence of ISPRAM
151_present	-	

Signal Name	Туре				Description		
ISP_perfcnt_event	Ι	Implementatio	on specifi	c ISPRAM per	formance count	er event	
ISP_ram_busy_	Ι	ISPRAM will	not accep	pt any request i	n the next cycle	;	
ISP_busy_xx	I	ISPRAM is bu	usy with r	request - for sle	ep mode.		
ISP_tag_rdata_if[31:11]	Ι	Base address f	for SPRA	M region.			
ISP_tag_msk_if[19:12]	Ι	Mask for addr	ess comp	parison			
ISP_data_rdata_is[69:0]	Ι	Read data from	m data po	ort			
ISP_data_rpar_is[8:0]	Ι	Parity for read	l data				
ISP_datavld_nxt_if	Ι	Read data will	l be valid	next cycle			
ISP_dma_addr_xx[19:3]	Ι	Index of DMA	A access				
ISP_dma_wdata_xx[63:0]	Ι	DMA write da	ata				
ISP_dma_rdreq_xx	Ι	DMA read req	quest				
ISP_dma_wrreq_xx	Ι	DMA write re	equest				
	I	DMA stall request to the core (when DMA has higher priority)					
ISP_dma_stallreq_xx ISPRAM External Interface instruction scratchpad RAM.		ave Interface) T	This set of	f interface signation	als allows a DM	A device to access the optio requested. The following are	
ISPRAM External Interface		ave Interface) T OCP comman encoding and t	This set of the bus ind the transa	f interface signa licating the type action type supp	als allows a DM of transaction ported by the sl	A device to access the optio requested. The following are ave.	
ISPRAM External Interface	e (OCP SI:	OCP commandencoding and Encoding	This set of the transa oding	f interface signaticating the type action type supp Command	als allows a DM e of transaction ported by the sl.	A device to access the optio requested. The following are ave. Description	
ISPRAM External Interface		OCP commander of the second se	This set of the bus ind the transa oding	f interface signaticating the type action type supp Command Idle	als allows a DM e of transaction ported by the sla Mnemonic IDLE	A device to access the optio requested. The following are ave. Description No transaction	
ISPRAM External Interface	e (OCP SI:	Ave Interface) T OCP command encoding and t Ence	This set of the us ind the transa oding 0	f interface signaticating the type action type supp Command Idle Write	als allows a DM e of transaction ported by the sl. Mnemonic IDLE WR	A device to access the optio requested. The following are ave. Description No transaction Used for data write	
ISPRAM External Interface instruction scratchpad RAM.	e (OCP SI:	OCP commandencoding and the second se	This set of the bus ind the transa oding	f interface signaticating the type action type supp Command Idle	als allows a DM e of transaction ported by the sla Mnemonic IDLE	A device to access the optio requested. The following are ave. Description No transaction	
ISPRAM External Interface instruction scratchpad RAM.	e (OCP SI:	OCP commandencoding and the second se	This set of d bus ind the transa oding 0 1 2 3-7	f interface signa licating the type action type supp Command Idle Write Read Unused	als allows a DM e of transaction ported by the sl. Mnemonic IDLE WR	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read	
ISPRAM External Interface instruction scratchpad RAM.	e (OCP Sla	Ave Interface) T	This set of the transa oding 0 1 2 3-7 ag identification	f interface signa licating the type action type supp Command Idle Write Read Unused er.	e of transaction ported by the slo Mnemonic IDLE WR RD -	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read	e the
ISPRAM External Interface instruction scratchpad RAM. OC_IDMA_MCmd[2:0] OC_IDMA_MTagID[2:0]	i (OCP Sla I I	Ave Interface) T OCP commandencoding and t Enco 3 Transaction ta Physical addree ISPRAM mod	This set of the set of the transa oding 0 1 2 3-7 ag identificent	f interface signa licating the type action type supp Command Idle Write Read Unused er.	als allows a DM e of transaction ported by the sla Mnemonic IDLE WR RD - -	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read Not used on 24KEf core	e the
ISPRAM External Interface instruction scratchpad RAM. OC_IDMA_MCmd[2:0] OC_IDMA_MTagID[2:0] OC_IDMA_MAddr[31:0]	I I I	Ave Interface) T OCP commandencoding and t Enco 3 Transaction ta Physical addree ISPRAM mod	This set of the transa oding 0 1 2 3-7 ag identifi ess bus. T lule. $C_DMA_$	f interface signal licating the type action type supp Command Idle Write Read Unused er. This address sho <i>MData</i>) valid i	als allows a DM e of transaction ported by the sla Mnemonic IDLE WR RD - -	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read Not used on 24KEf core	e the
ISPRAM External Interface instruction scratchpad RAM. OC_IDMA_MCmd[2:0] OC_IDMA_MTagID[2:0] OC_IDMA_MAddr[31:0] OC_IDMA_MDataValid OC_IDMA_MDataTagID[2	I I I I	Ave Interface) T OCP comman- encoding and t Ence 3 Transaction ta Physical addre ISPRAM mod Write data (OC Write data tag	This set of d bus ind the transa oding 0 1 2 3-7 ng identific c_DMA_ g identific	f interface signal licating the type action type supp Command Idle Write Read Unused er. This address sho <i>MData</i>) valid i	e of transaction ported by the sla Mnemonic IDLE WR RD - ould fall in the a ndication	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read Not used on 24KEf core	e the
ISPRAM External Interface instruction scratchpad RAM. OC_IDMA_MCmd[2:0] OC_IDMA_MTagID[2:0] OC_IDMA_MAddr[31:0] OC_IDMA_MDataValid OC_IDMA_MDataTagID[2 :0]	I I I I I I I	Ave Interface) T OCP comman- encoding and t Ence 3 Transaction ta Physical addre ISPRAM mod Write data (OC Write data tag Write data bus	This set of the transa oding 0 1 2 3-7 ag identific c_DMA_ g identific g identific	f interface signa licating the type action type supp Command Idle Write Read Unused er. This address sho <i>MData</i>) valid i r	e of transaction ported by the sla Mnemonic IDLE WR RD - ould fall in the a ndication	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read Not used on 24KEf core	e the
ISPRAM External Interface instruction scratchpad RAM. OC_IDMA_MCmd[2:0] OC_IDMA_MTagID[2:0] OC_IDMA_MAddr[31:0] OC_IDMA_MDataValid OC_IDMA_MDataTagID[2 :0] OC_IDMA_MData[63:0]	I I I I I I I I	Ave Interface) T OCP comman- encoding and t Ence 3 Transaction ta Physical addre ISPRAM mod Write data (OC Write data tag Write data bus	This set of the transa oding 0 1 2 3-7 ag identifier g identifier g identifier s to the in esponse (0	f interface signa licating the type action type supp Command Idle Write Read Unused er. This address sho <i>MData</i>) valid i r astruction scrate 00=NULL, 01=	e of transaction ported by the sla Mnemonic IDLE WR RD 	A device to access the optio requested. The following are ave. Description No transaction Used for data write Used for data read Not used on 24KEf core	e the

Table 20	24KEf™	Core Signal	Descriptions	(Continued)
----------	--------	-------------	--------------	-------------

Signal Name	Туре	Description
OC_IDMA_SCmdAccept	0	 Flow control for commands (0=BUSY, 1=READY) The core deasserts this signal when it is not ready to accept a new command. The master has to hold the new command till it is accepted by the core. The core asserts this signal when it has accepted a new command
OC_IDMA_SDataAccept	0	 Flow control for data (0=BUSY, 1=READY) The core deasserts this signal when it is not ready to accept a the data driven in <i>OC_IDMA_SData</i>. The master has to hold the data till it is accepted by the core. The core asserts this signal when it has accepted the data driven in <i>OC_IDMA_SData</i>.
EJTAG Interface	1	1
TAP interface. These signals	comprise t	he EJTAG Test Access Port.
EJ_TRST_N	I	Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion of EJ_TRST_N causes the TAP controller to be reset.
EJ_TCK	Ι	Test Clock Input (TCK) for the EJTAG TAP.
EJ_TMS	Ι	Test Mode Select Input (TMS) for the EJTAG TAP.
EJ_TDI	Ι	Test Data Input (TDI) for the EJTAG TAP.
EJ_TDO	0	Test Data Output (TDO) for the EJTAG TAP.
EJ_TDOzstate	0	Drive indication for the output of TDO for the EJTAG TAP at chip level: 1: The TDO output at chip level must be in Z-state 0: The TDO output at chip level must be driven to the value of <i>EJ_TDO</i> IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state core output, the 24KEf core outputs this signal to drive an external 3-state buffer.
Debug Interrupt:	1	
EJ_DINTsup	S	Value of DINTsup for the Implementation register. When high, this signal indicates that the EJTAG probe can use the DINT signal to interrupt the processor.
EJ_DINT	A	Debug exception request when this signal is asserted one clock period after being deasserted in the previous clock period. The request is cleared when debug mode is entered. Requests when in debug mode are ignored.
Debug Mode Indication:	1	
EJ_DebugM	0	Asserted when the core is in Debug Mode. This can be used to bring the core out of a low power mode. In systems with multiple processor cores, this signal can be used to synchronize the cores when debugging.
Device ID bits:	1	1
		ber visible to the EJTAG probe. These inputs are always available for soft core customers. On hese inputs to their own values.

Table 20	24KEf™	Core Signal	Descriptions	(Continued)
----------	--------	-------------	--------------	-------------

Signal Name	Туре		Description			
EJ_ManufID[10:0]	S	Value of the ManufID[10:0] field in the Device ID register. As per IEEE 1149.1-1990 section 11.2, the manufacturer identity code shall be a compressed form of JEDEC standard manufacturer's identification code in the JEDEC Publications 106, which can be found at: http://www.jedec.org/ ManufID[6:0] bits are derived from the last byte of the JEDEC code by discarding the parity bit. ManufID[10:7] bits provide a binary count of the number of bytes in the JEDEC code that contain the continuation character (0x7F). Where the number of continuations characters exceeds 15, these 4 bits contain the modulo-16 count of the number of continuation characters.				
EJ_PartNumber[15:0]	S	Value of the PartNumber[15	:0] field in the Device ID register.			
EJ_Version[3:0]	S	Value of the Version[3:0] fie	eld in the Device ID register.			
System Implementation Depen	ı ndent Outp	uts:				
These signals come from EJT. additional control over the system		registers. They have no effect	on the core, but can be used to give EJTAG debugging s	oftware		
EJ_SRstE	0		can deassert this signal if it wants to mask soft resets. If ome, or all soft reset sources are masked.	this		
EJ_PerRst	0	Peripheral Reset. EJTAG ca peripheral devices in the sys	n assert this signal to request the reset of some or all of stem.	the		
EJ_PrRst	0	Processor Reset. EJTAG can fed into the <i>SI_Reset</i> signal.	n assert this signal to request that the core be reset. This	s can be		
TCtrace Interface						
which in turn connects to the	physical of	ff-chip trace pins.	e TCtrace interface connects to the Probe Interface Bloc G TAP interface, and use of this interface is not require			
		be within the boundaries def encoded values for clock rat				
		TC_ClockRatio	Clock Ratio			
		000	8:1 (Trace clock is eight times the core clock)			
TC_ClockRatio[2:0]	0	001	4:1 (Trace clock is four times the core clock)			
		010	2:1 (Trace clock is double the core clock) 1:1 (Trace clock is same as the core clock)			
		011 100	1:2 (Trace clock is one half the core clock)			
		100				
		110	1:4 (Trace clock is one fourth the core clock)1:6 (Trace clock is one sixth the core clock)			
		110	1:8 (Trace clock is one eight the core clock)			
TC_CRMax[2:0]	S		rted. This static input sets the CRMax field of the <i>TCBC</i> ilities of the Probe Interface Block (PIB) module. This ilue of <i>TC_ClockRatio</i> .			

Table 20	24KEf™	Core Signal Description	s (Continued)
----------	--------	-------------------------	---------------

Туре	Description					
S	Minimum clock ratio supported. This input sets the CRMin field of the <i>TCBCONFIG</i> register. It defines the capabilities of the PIB module. This field determines the maximum value of <i>TC_ClockRatio</i> .					
	This static input will set the PW field of the <i>TCBCONFIG</i> register. If this interface is not driving a PIB module, but some chip-level TCB-like module, then t field should be set to 2'b11 (reserved value for PW).					
s		TC_ProbeWidth	Number physical data pin on PIB			
		00	4 bits			
		01	8 bits			
		10	16 bits			
		11	Not directly to PIB			
S			the TC Interface. When de	e-asserted (low) all the		
0			start running its output cloo	ck and can expect valid		
0	For a simple PIB which also capable PIB which also be a simple PIB which al	ch only serves one T so uses <i>TC_Valid</i> and	CB, this pin can be ignore I <i>TC_Stall</i> , the PIB must s	d. For a multi-core		
I	This input identifies the number of bits picked up by the probe interface module in each "cycle". If $TC_ClockRatio$ indicates a clock-ratio higher than 1:2, then clock multiplication in the Probe logic is used. The "cycle" is equal to each core clock cycle. If $TC_ClockRatio$ indicates a clock-ratio lower than or equal to 1:2, then "cycle" is (clock ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a "cycle" is equa to core clock cycle; with a clock ratio of 1:4, a "cycle" is equal to one half of core clock cycle. This input controls the down-shifting amount and frequency of the trace word on $TC_Data[63:0]$. The bit width and the corresponding $TC_DataBits$ value is shown in the table below.					
		TC Data Dita 12:01	_			
			-	-		
				-		
				-		
				-		
				-		
				-		
	This is set as is he also					
	S S S S O	Image: Normal systemMinimum clock ratio register. It defines the value of $TC_ClockRat$ SThis static input will solution if this interface is not of field should be set to aSMust be asserted when other inputs are disregOTrace Enable, when as data on all other output capable PIB which als calibration pattern when the absolution of the core of to core clock cycle; we cycle.Image: Image:	Image: Second systemMinimum clock ratio supported. This inpure sister. It defines the capabilities of the P value of $TC_ClockRatio$.SThis static input will set the PW field of the If this interface is not driving a PIB module field should be set to 2'b11 (reserved value 00 0 01 10 10 11 10 10 11 10 10 11 10 10	N N S Minimum clock ratio supported. This input sets the CRMin field of register. It defines the capabilities of the PIB module. This field deterate value of $TC_ClockRatio$. S This static input will set the PW field of the $TCBCONFIG$ register. If this interface is not driving a PIB module, but some chip-level TCB field should be set to 2'b11 (reserved value for PW). S $\overline{TC_ProbeWidth}$ Number physical data pin on PIB 00 4 bits 01 8 bits 10 16 bits 11 Not directly to PIB S Must be asserted when a PIB is attached to the TC Interface. When do ther inputs are disregarded. 0 O Trace Enable, when asserted the PIB must start running its output cloc data on all other outputs. This signal is asserted when the Cal bit in the <i>TCBCONTROLB</i> register. If <i>TC_ClockRatio</i> indicates a clock-ratio higher than 1:2, then clock Probe logic is used. The "cycle" is equal to ach core clock cycle. If <i>TC_ClockRatio</i> indicates a clock-ratio bits picked up by the probe interface." If <i>TC_ClockRatio</i> indicates a clock-ratio lower than or equal to 1:2, ratio * 2) of the core clock cycle. For example, with a clock ratio of to core clock cycle; with a clock ratio of 1:4, a "cycle" is equal to or cycle. If <i>TC_DataBits[2:0]</i> Probe uses following <i>TC_Data[3:0]</i> I <i>Trace Enable</i> , when shifting amount and frequency of the to core clock cycle; with a clock ratio of 1:4, a "cycle" is equal to or cycle. </td		

Table 20	24KEf™ C	Core Signal	Descriptions	(Continued)
----------	----------	-------------	--------------	-------------

Signal Name	Туре		D	escription	
TC_Valid	0	Asserted when a valid new trace word is started on the <i>TC_Data[63:0]</i> signals.			
TC_vana		<i>TC_Valid</i> is only as	sserted when TC_Date	<i>aBits</i> is 100.	
TC_Stall	I	When asserted, a new <i>TC_Valid</i> in the following cycle is stalled. <i>TC_Valid</i> is still asserted, but the <i>TC_Data</i> value and <i>TC_Valid</i> are held static, until the cycle after <i>TC_Stall</i> is sampled low. <i>TC_Stall</i> is only sampled in the cycle before a new <i>TC_Valid</i> cycle, and only when			
			0, indicating a full wor		lu onry when
		TC_DataBits[2:0].		t interface is shifted down as re a new trace word is valid o so asserted.	
TC_Data[63:0]	0	The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output bus. N is the number of bits picked up by the PIB in each core clock cycle. For clock ratios 1:2 and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, or 16). For higher clock ratios, N is larger than the number of physical trace pins.			
TC_ProbeTrigIn	А		Rising edge trigger input. The source should be the Probe Trigger input. The input is considered asynchronous; i.e., it is double registered in the core.		
TC_ProbeTrigOut	0	Single cycle (relative to the "cycle" defined the description of <i>TC_DataBits</i>) high strobe, trigger output. The target of this trigger is intended to be the external probe's trigger output.			
TC_ChipTrigIn	A	Rising edge trigger input. The source should be on-chip. The input is considered asynchronous; i.e., it is double registered in the core.			
TC_ChipTrigOut	0	Single cycle (relative to core clock) high strobe, trigger output. The target of this trigger is intended to be an on-chip unit.			
Memory BIST Interface	I	•			
These signals provide the int the core.	erface to opt	ional integrated or us	er-specified memory B	BIST capability for testing the	SRAM arrays within
MB_invoke	Ι	Enable signal for integrated BIST controllers.			
Algorithm selection for I-Cache BIST controllers. For a core support for the I-Cache, bit0 is used to select the BIST algori			ed with IFA-13 BIST		
			MB_ic_algorithm[0]	I-Cache BIST Algorithm	7
MB_ic_algorithm[7:0]	S		0	March-C+	-
			1	IFA-13	
		If the IFA-13 algorithm is selected, then <i>MB_ic_algorithm</i> [5:1] is used to determine the retention delay.			
		Algorithm selection for D-Cache BIST controllers. For a core configured with IFA-13 BIST support for the D-Cache, bit0 is used to select the BIST algorithm:			
	S		MB_dc_algorithm[0]	D-Cache BIST Algorithm	
MB_dc_algorithm[7:0]			0	March-C+	
			1	IFA-13]
		If the IFA-13 algor retention delay.	ithm is selected, then	MB_dc_algorithm[5:1] is use	ed to determine the

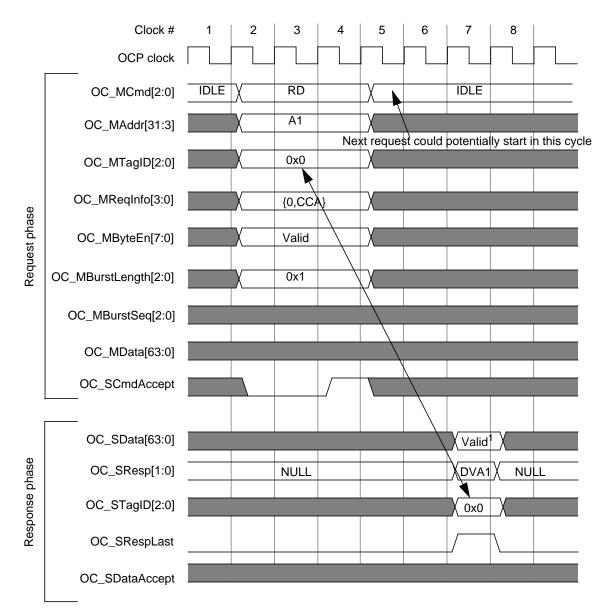
Table 20	24KEf™	Core Signal	Descriptions	(Continued)
----------	--------	-------------	--------------	-------------

Signal Name	Туре	Description			
		Algorithm selection for data scratchpad (DSPRAM) BIST controllers. For a core configured with IFA-13 BIST support for the data scratchpad RAM, bit0 is used to select the BIST algorithm:			
MB_sp_algorithm[7:0]	S		MB_sp_algorithm[0]	DSPRAM BIST Algorithm]
			0	March-C+	
			1	IFA-13]
		If the IFA-13 algorithm is selected, then <i>MB_sp_algorithm</i> [5:1] is used to determine the retention delay.			
				chpad (ISPRAM) BIST contro the data scratchpad RAM, bit	
			MB_isp_algorithm[0]	DSPRAM BIST Algorithm]
MB_isp_algorithm[7:0]	S		0	March-C+]
			1	IFA-13]
		If the IFA-13 algor retention delay.	rithm is selected, then	<i>MB_isp_algorithm[5:1]</i> is use	ed to determine the
		Algorithm selection for trace memory BIST controllers. For a core configured with IFA-13 BIST support for the trace memory, bit0 is used to select the BIST algorithm:			
	S		MB_tr_algorithm[0]	Trace mem BIST Algorithm]
<pre>MB_tr_algorithm[7:0]</pre>			0	March-C+	-
		1 IFA-13 If the IFA-13 algorithm is selected, then MB_tr_algorithm[5:1] is used to determine the retention delay.			
MB_done	0	Common completion indicator for all integrated BIST sequences.			
MB_dd_fail	0	When high, indica	When high, indicates that the BIST test failed on the data cache data array.		
MB_dt_fail	0	When high, indica	When high, indicates that the BIST test failed on the data cache tag array.		
MB_dw_fail	0	When high, indicates that the BIST test failed on the data cache way select array.			
MB_id_fail	0	When high, indicates that the BIST test failed on the instruction cache data array.			
MB_it_fail	0	When high, indicates that the BIST test failed on the instruction cache tag array.			
MB_iw_fail	0	When high, indicates that the BIST test failed on the instruction cache way select array.			
MB_sp_fail	0	When high, indicates that the BIST test failed on the data SPRAM array.			
MB_isp_fail	0	When high, indicates that the BIST test failed on the instruction SPRAM array.			
MB_tr_fail	0	When high, indicates that the BIST test failed on the trace memory array.			
MB_tombt[n-1:0]	Ι	Variable width input bus available for user-specified BIST applications.			
MB_frommbt[n-1:0]	0	Variable width output bus available for user-specified BIST applications.			
Scan Test Interface	1	1			

Signal Name	Туре	Description	
These signals provide an interface for testing the core. The use and configuration of these pins are implementation-dependent.			
gscanenable	Ι	This signal should be asserted while scanning vectors into or out of the core. The <i>gscanenable</i> signal must be deasserted during normal operation and during capture clocks in test mode.	
gscanmode	Ι	This signal should be asserted during all scan testing both while scanning and during capture clocks. The <i>gscanmode</i> signal must be deasserted during normal operation.	
gscanramaddr0	S	This signal controls whether the address sent to the cache SRAM is forced to 0 when gscanmode is asserted.	
gscanramwr	Ι	This signal controls the read and write strobes to the cache SRAM when <i>gscanmode</i> is asserted.	
gscanin[n-1:0]	Ι	These signal(s) are the inputs to the scan chain(s).	
gscanout[n-1:0]	0	These signal(s) are the outputs from the scan chain(s).	

Table 20 24KEfTM Core Signal Descriptions (Continued)

OCP Interface Transactions


The following sections show timing diagrams for various OCP transactions.

The 24KEf core assumes that any agent or interconnect between it and the target (including the target) can re-order the transactions only if they take on the responsibility of resolving hazards/dependencies.

In a straightforward implementation of an OCP interconnect, the interconnect is expected not to re-order the transactions, but maintain the tagged interface all the way to the target. This essentially gives the transactions a tagging semantic so that Out Of Order (OOO) transaction return is supported. Note that the target is still responsible for checking hazards if it returns responses OOO.

Single Read

Figure 13 shows a single read transaction, as would occur on an uncached fetch or load. The 24KEf core starts a request phase on clock 2 by switching the MCmd field from IDLE to RD. Simultaneously, it presents valid values on the address (*OC_MAddr*), tag (*OC_MTagID*), transaction info (*OC_MReqInfo*), byte enables (*OC_MByteEn*) and burst length (*OC_MBurstLength*). The slave is shown to flow control the master for one clock then accept the request by asserting *OC_SCmdAccept* in cycle 4, ending the request phase. The slave responds to this request in cycle 7 with a DVA on *OC_SResp*, valid data on *OC_SData*, the return tag ID on *OC_STagID* and last burst indication on *OC_SRespLast*. The request phase for a new transaction by the 24KEf core can potentially start in cycle 5.

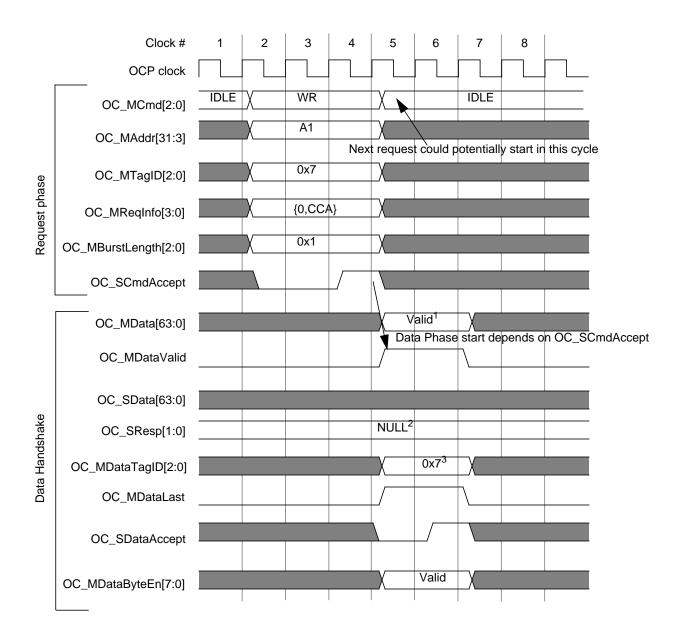
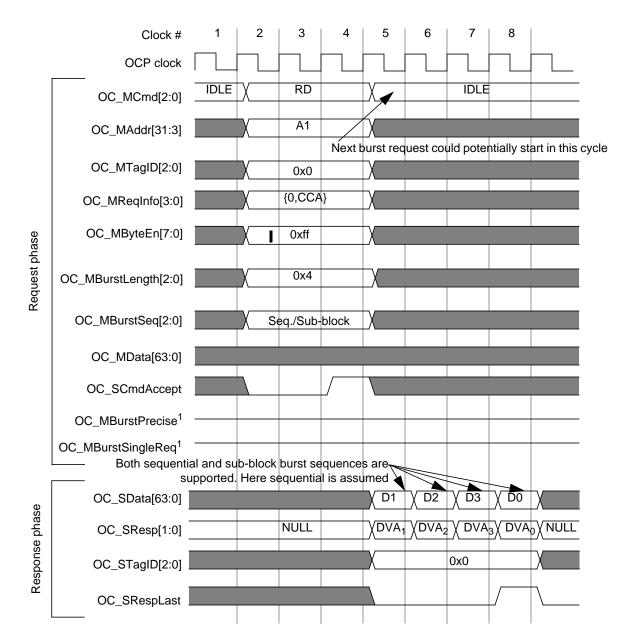

¹ Only the relevant bytes of OC_SData[63:0] carry valid data corresponding to the request signal OC_MByteEn[7:0] at the time of request.

Figure 13 Single OCP Read Transaction with flow control

Single Write

Figure 14 shows a single write transaction which could be generated from an uncached store, or a write-through or uncached accelerated store that does not merge. The 24KEf core starts a request phase on clock 2 by switching the MCmd field from IDLE to WR. At the same time it presents valid values on the address (*OC_MAddr*), tag

(*OC_MTagID*), transaction info (*OC_MReqInfo*), and burst length (*OC_MBurstLength*). The data part of the transaction starts when the 24KEf core asserts the *OC_MDataValid* in cycle 5 along with the data on *OC_MData and byte enables on OC_MDataByteEn*. The slave is shown to flow control the data phase (as is the request phase) by deasserting *OC_SDataAccept* for one cycle before accepting the transaction in cycle 6. A fixed value of 0x7 is used as a TagID for all writes.


¹ Only the relevant bytes of OC_MData[63:0] carry valid data corresponding to the request signal OC_MDataByteEn[7:0] at the time of request.

² 24KEf core does not expect a response to a posted write. (Some OCP systems generate a response to posted writes in the same cycle as SCmdAccept). ³ The core always forces the OC_MDataTagID[2:0] signal to be 0x7 for writes.

Figure 14 Single OCP Write Transaction with flow control

Bursted Read

In Figure 15, a bursted read is shown. This is done on a cacheable load or fetch miss to refill the cache line. The core may be configured for either sequential or sub-block burst order. The transaction looks similar to the single read case except that a burst of four 64b data chunks are transferred in the burst order specified.

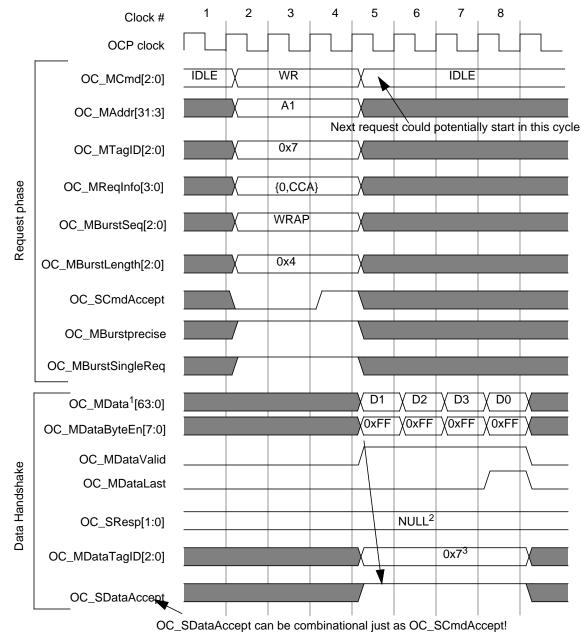

¹ OC_MBurstPrecise and OC_MBurstSingleReq are always forced to 0x1 by the 24KEf core since all bursts are precise and only have a single request cycle even if a burst of data is requested.

Figure 15 Burst OCP Read Transaction with flow control

Bursted Write

Figure 16 depicts a bursted write transaction. This would typically be seen on a dirty cache line write-back, or when uncached accelerated or write-through stores gather an entire line. Bursted writes always begin at the lowest

address of the line. The transaction looks similar to the single write case except that a burst of four 64b data chunks are transferred. Note that the flow control signal OC SDataAccept can be asserted combinationally in cycle 5 as shown.

¹ The 24KEf core will only generate an aligned WRAP burst for burst writes, starting at burst address 0x0. ² Core does not expect a response to a posted burst write. (Some OCP systems generate a response to posted writes at the end of the burst, for example an ERR). ³Core always forces the OC_MDataTagID[2:0] signal to be 0x7 for writes.

Figure 16 Burst OCP Write Transaction with flow control

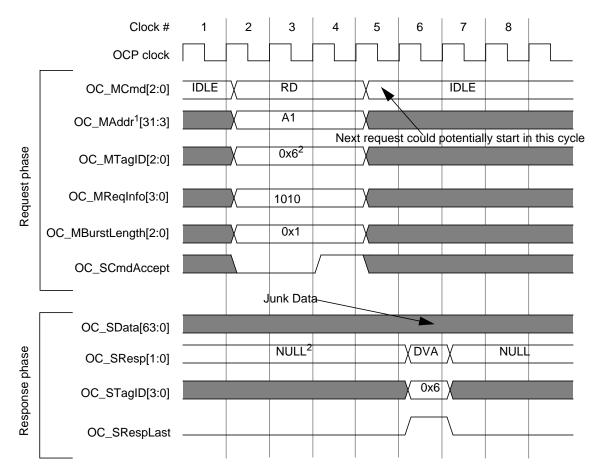

SYNC Transaction

Figure 17 shows a SYNC transaction. The 24KEf core will only generate this type of transaction for SYNC instructions. The transaction looks very similar to a single read (RD) transaction, along with the following properties:

- 1. OC_MByteEn is 0x0
- 2. OC_MTagID is 0x6

- 3. OC_MAddr[31:8] is 0x1fc000
- 4. *OC_MAddr*[7:3] carries the SYNC stype bits [10:6]
- 5. OC_MReqInfo is 0xA

The response is shown in clock 6 when the *OC_SResp* bus is asserted by the slave, indicating a DVA (DVA is a valid acknowledgment in OCP terminology).

¹ Since 24KEf cores uses RD for SYNC's, a conservative address (close to the MIPS boot vector) is sent out on OC_MAddr. This is a concatenation of {0x1fc000, sync_opcode_stype[4:0]}. ²Core always forces the OC_MDataTagID[2:0] signal to be 0x6 for SYNC's.

Figure 17 SYNC operation as a OCP RD Transaction

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant changes to this document since its last release. Significant changes are defined as those which you should take note of as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change bars. Change bars will be removed for changes which are more than one revision old. Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these sections indicate alterations since the previous version of the relevant Architecture document.

Table	21	Revision	History
-------	----	----------	---------

Revision	Date	Description	
00.01	January 7, 2005	Initial version	
00.02	January 19, 2005	Updates based on feedback	
01.00	April 26, 2005	24KE EA release updates	
01.01	June 30, 2005	General Availability	
		8KB cache support	
01.02 December	December 14, 2005	Clock-ratio resynchronization	
	December 14, 2005	Pin changes for OCP compliance	
		New scan control pin	

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, MIPS-VERIFIED, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20K, 20Kc, 24K, 24Kc, 24Kf, 24KEc, 24KEf, 25Kf, 34K, 34Kc, 34Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, JALGO, Malta, MDMX, MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: D1.14, Built with tags: 2B