
MIPS32® 24KEf™ Processor Core Datasheet December 14, 2005

The MIPS32® 24KEf™ core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS RISC core
designed for custom system-on-silicon applications. The core is designed for semiconductor manufacturing companies,
ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripherals with a high-
performance RISC processor. Fully synthesizable and highly portable across processes, it can be easily integrated into full
system-on-silicon designs, allowing developers to focus their attention on end-user products.

The 24KEf core implements the MIPS32 Release 2 Architecture in an 8-stage pipeline. It includes support for the
MIPS16e™ application specific extension and the 32-bit privileged resource architecture. This standard architecture allows
support by a wide range of industry standard tools and development systems.

The 24KEf core incorporates the DSP Application Specific Extension (ASE), providing support for a number of powerful
data processing operations. There are instructions for executing fractional arithmetic (Q15/Q31) and for saturating
arithmetic. Additionally, for smaller data sizes, SIMD operations are supported, allowing 2x16b or 4x8b operations to occur
simultaneously. Another feature of the ASE is the inclusion of additional HI/LO accumulator registers to improve the
parallelization of independent accumulation routines.

To maintain high pipeline utilization, dynamic branch prediction is included in the form of a Branch History Table and a
Return Prediction Stack. The Memory Management Unit (MMU) contains 4-entry instruction and 8-entry data Translation
Lookaside Buffers (ITLB/DTLB) and a configurable 16/32/64 dual-entry joint TLB (JTLB) with variable page sizes.
Alternatively, for applications not requiring address mapping or protection, the TLBs can be replaced with a simple Fixed
Mapping mechanism.

The 24KEf core also features an IEEE 754 compliant Floating Point Unit (FPU). The FPU supports both single and double
precision instructions.

The synthesizable 24KEf core includes a high performance Multiply/Divide Unit (MDU). The MDU is fully pipelined to
support a single cycle repeat rate for 32x32 MAC instructions, which enables multiply-intensive algorithms to be performed
efficiently. Further, in the 24KEf Pro™ Core, the optional CorExtend block can utilize the HI/LO registers in the MDU
block. The CorExtend block allows specialized functions to be efficiently implemented.

Instruction and data level-one caches are configurable at 0, 8, 16, 32, or 64 KB in size. Each cache is organized as 4-way
set associative. Data cache misses are non-blocking and up to 4 may be outstanding. Two instruction cache misses can be
outstanding. Both caches are virtually indexed and physically tagged to allow them to be accessed in the same cycle that
the address is translated. To achieve high frequencies while using commercially available SRAM generators, the cache
access is spread across two pipeline stages, leaving nearly an entire cycle for the SRAM access.

The Bus Interface Unit implements the Open Core Protocol (OCP) which has been developed to address the needs of SOC
designers. This implementation features 64-bit read and write data buses to efficiently transfer data to and from the L1
caches. The BIU also supports a variety of core/bus clock ratios to give greater flexibility for system design
implementations.

Optional interfaces are supported to external scratchpad or coprocessor blocks.

An Enhanced JTAG (EJTAG) version 3.10 compliant block allows for software debugging of the processor and includes a
TAP controller as well as optional instruction and data virtual address/value breakpoints. Additionally, real-time tracing of
instruction program counter, data address and data values can be supported.

Figure 1 shows a block diagram of the 24KEf core.
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 Document Number: MD00446

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 1 24KEf™ Core Block Diagram

MDU

MMU
16/32/64 entry

JTLB
or FMT

D-cache
0/8/16/32/64KB

4 way set associative

BIU
4 entry

merging write
buffer, 6

outstanding
reads

TAP

EJTAG

 Power
Mgmt

I-cache
0/8/16/32/64KB

4 way set associative Off-Chip
Debug I/F

 Execution
Unit (RF/

ALU/Shift)

O
C

P
 In

te
rf

ac
e

O
n-

C
hi

p
B

us
(e

s)

Fetch Unit
8 entry instruction

buffer
512 entry BHT
4 entry RPS

Non blocking
Load/Store Unit

4 outstanding misses

 System
Coprocessor

CorExtend

CP2

D
S

P
R

A
M

 D
M

A
O

C
P

 In
te

rf
ac

e

User-defined
CorExtend

block

User-defined
COP2 block

Fixed/Required Optional

Data
Scratchpad

RAM

Trace

 Off/On-Chip
Trace I/F

Instruction
Scratchpad

RAM

ISPRAM
DMA OCP I/F

FPU
2 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

24KEf™ Core Features

• 8-stage pipeline

• 32-bit address paths

• 64-bit data paths to caches and external interface

• MIPS32-Compatible Instruction Set

– Multiply-Accumulate and Multiply-Subtract
Instructions (MADD, MADDU, MSUB, MSUBU)

– Targeted Multiply Instruction (MUL)
– Zero/One Detect Instructions (CLZ, CLO)
– Wait Instruction (WAIT)
– Conditional Move Instructions (MOVZ, MOVN)
– Prefetch Instruction (PREF)

• MIPS32 Enhanced Architecture (Release 2) Features

– Vectored interrupts and support for external interrupt
controller

– Programmable exception vector base
– Atomic interrupt enable/disable
– GPR shadow registers (optionally, one or three

additional shadows can be added to minimize latency
for interrupt handlers)

– Bit field manipulation instructions

• MIPS32 Privileged Resource Architecture

• MIPS DSP ASE

– Fractional data types (Q15, Q31)
– Saturating arithmetic
– SIMD instructions operate on 2x16b or 4x8b

simultaneously
– 3 additional pairs of accumulator registers

• Programmable Memory Management Unit

– 16/32/64 dual-entry JTLB with variable page sizes
– 4-entry ITLB
– 8-entry DTLB
– Optional simple Fixed Mapping Translation (FMT)

mechanism

• MIPS16e™ Code Compression

– 16 bit encodings of 32 bit instructions to improve code
density

– Special PC-relative instructions for efficient loading of
addresses and constants

– SAVE & RESTORE macro instructions for setting up
and tearing down stack frames within subroutines

– Improved support for handling 8 and 16 bit datatypes

• Programmable L1 Cache Sizes

– Individually configurable instruction and data caches
– Instruction and Data cache sizes of 0/8/16/32/64 KB
– 4-Way Set Associative
– Up to 4 outstanding load misses
– Write-back and write-through support
– 32-byte cache line size

– Virtually indexed, physically tagged
– Cache line locking support
– Non-blocking prefetches
– Optional parity support

• Bus Interface

– OCP 2.1 compliant
– OCP interface with 32-bit address and 64-bit data
– OCP interface runs at core/bus clock ratios of 1, 1.5, 2,

2.5, 3, 3.5, 4 or 5 via a separate synchronous bus clock
– Handshaked interface to allow core/bus clock ratio to

change without resetting the system
– Burst size of four 64-bit beats
– 4 entry write buffer
– “Simple” byte enable mode allows easier bridging to

other bus standards
– Extensions for front-side L2 cache

• Scratchpad RAM support

– Independent Instruction and Data Scratchpad RAM
– Independent of cache configuration
– Independent 64 bit OCP interface for external DMA
– External interface runs at the same core/bus clock ratio

as that of BIU interface
– Maximum size of 1MB each
– Interface allows back-stalling the core

• Multiply/Divide Unit

– Maximum issue rate of one 32x32 multiply per clock
– 5 cycle multiply latency
– Early-in iterative divide. Minimum 12 and maximum 38

clock latency (dividend (rs) sign extension-dependent)

• CorExtend™ User Defined Instruction Set Extensions
(available in 24KEf Pro™ core)

– Allows user to define and add instructions to the core at
build time

– Maintains full MIPS32 compatibility
– Supported by industry standard development tools
– Single or multi-cycle instructions
– Separately licensed; a core with this feature is known as

the 24KEf Pro™ core
– Implemented in same block as MDU, allows all HI and

LO registers to be shared for MIPS32 and CorExtend
multiply operations.

• Floating Point Unit (FPU)

– IEEE-754 compliant Floating Point Unit
– Compliant to MIPS 64b FPU standards
– Supports single and double precision datatypes
– Optionally run at 1:1 or 2:1 core/FPU clock ratio

• Coprocessor 2 interface

– 64 bit interface to a user designed coprocessor

• Power Control

– Minimum frequency: 0 MHz
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 3

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

– Power-down mode (triggered by WAIT instruction)
– Support for software-controlled clock divider
– Support for extensive use of local gated clocks

• EJTAG Debug

– Support for single stepping
– Virtual instruction and data address/value breakpoints
– TAP controller is chainable for multi-CPU debug
– Cross-CPU breakpoint support
– EJTAG version 3.10 compliant

• MIPS Trace

– PC, data address and data value tracing w/ trace
compression

– Support for on-chip and off-chip trace memory
– PDTrace version 4.1 compliant

• Testability

– Full scan design achieves test coverage in excess of
99% (dependent on library and configuration options)

– Optional memory BIST for internal SRAM arrays

Architecture Overview

The 24KEf core contains a variety of blocks some of which
are always present, while others are optional.

The required blocks are as follows:

• Fetch Unit

• Execution Unit

• MIPS16e recode

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Cache Controllers

• Bus Interface Unit (BIU)

• Power Management

• Instruction Cache

• Floating Point Unit

Optional blocks include:

• CorExtend™ User Defined Instruction (UDI) support

• Enhanced JTAG (EJTAG) breakpoints

• MIPS Trace (PDTrace) support

• Instruction/Data cache

• Instruction/Data scratchpad

• COP2 interface

Pipeline Flow

The 24KEf core implements an 8-stage pipeline. Three
extra fetch stages are conditionally added when executing
MIPS16e instructions. This pipeline allows the processor
to achieve a high frequency while maintaining reasonable
area and power numbers.

The 24KEf core pipeline consists of the following stages:

• IF - Instruction Fetch First

• IS - Instruction Fetch Second

• IR - Instruction Recode (MIPS16e only)

• IK - Instruction Kill (MIPS16e only)

• IT - Instruction Fetch Third (MIPS16e only)

• RF - Register File access

• AG - Address Generation

• EX - Execute

• MS - Memory Second

• ER - Exception Resolution

• WB - WriteBack

The 24KEf core implements a bypass mechanism that
allows the result of an operation to be forwarded directly to
the instruction that needs it without having to write the
result to the register and then read it back.

Figure 2 shows a diagram of the 24KEf core pipeline.

Figure 2 24KEf™ Core Pipeline

IF Stage: Instruction Fetch First

• I-cache tag/data arrays accessed

• Branch History Table accessed

• ITLB address translation performed

• Instruction watch and EJTAG break compares done

RF AG EX MS ER WB

MIPS16e
32b code

IF IS IR IK IT
4 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

IS - Instruction Fetch Second

• Detect I-cache hit

• Way select

• MIPS32 Branch prediction

IR - Instruction Recode

• MIPS16e instruction recode

• MIPS16e branch prediction

IK - Instruction Kill

• MIPS16e instruction kill

IT - Instruction Fetch Third

• Instruction Buffer

• Branch target calculation

RF - Register File Access

• Register File access

• Instruction decoding/dispatch logic

• Bypass muxes

AG - Address Generation

• D-cache Address Generation

• Bypass muxes

EX - Execute/Memory Access

• Skewed ALU

• DTLB

• Start DCache access

• Branch Resolution

• Data watch and EJTAG break address compares

MS - Memory Access Second

• Complete DCache access

• DCache hit detection

• Way select mux

• Load align

• EJTAG break data value compare

ER- Exception Resolution

• Instruction completion

• Register file write setup

• Exception processing

WB - Writeback

• Register file writeback occurs on rising edge of this
cycle

24KEf™ Core Logic Blocks

The 24KEf core consists of the following logic blocks,
shown in Figure 1. These logic blocks are defined in the
following subsections:

• Fetch Unit

• Execution Unit

• Floating Point Unit (FPU) / Coprocessor 1

• MIPS16e support

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

Fetch Unit

The 24KEf core fetch unit is responsible for fetching
instructions and providing them to the rest of the pipeline,
as well as handling control transfer instructions (branches,
jumps, etc.). It calculates the address for each instruction
fetch and contains an instruction buffer that decouples the
fetching of instructions from their execution.

The fetch unit contains two structures for the dynamic
prediction of control transfer instructions. A 512-entry
Branch History Table (BHT) is used to predict the direction
of branch instructions. It uses a bimodal algorithm with two
bits of history information per entry. Also, a 4-entry Return
Prediction Stack (RPS) is a simple structure to hold the
return address from the most recent subroutine calls. The
link address is pushed onto the stack whenever a JAL,
JALR, or BGEZAL instruction is seen. Then that address is
popped when a JR instruction occurs.

Execution Unit

The 24KEf core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,
shift, add, subtract) and an autonomous multiply/divide
unit. The 24KEf core contains thirty-two 32-bit general-
purpose registers used for integer operations and address
calculation. Optionally, one or three additional register file
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 5

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Logic for verifying branch prediction

• Load aligner

• Bypass multiplexers used to avoid stalls when
executing instructions streams where data producing
instructions are followed closely by consumers of their
results

• Leading Zero/One detect unit for implementing the
CLZ and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

• Shifter & Store Aligner

The execution unit also includes the following DSP ASE
operations for various data types:

• two-cycle add, sub, absolute, shift, compare

• two-cycle compare, byte manipulation, precision
control

Floating Point Unit (FPU) / Coprocessor 1

The 24KEf core Floating Point Unit (FPU) implements the
MIPS64 ISA (Instruction Set Architecture) for floating-
point computation. The implementation supports the
ANSI/IEEE Standard 754 (IEEE Standard for Binary
Floating-Point Arithmetic) for single and double precision
data formats. The FPU contains thirty-two 64-bit floating-
point registers used for floating point operations.

The FPU can be configured at build time to run at either the
same or one-half the clock rate of the integer core. The FPU
is not as deeply pipelined as the integer core so the
maximum core frequency will only be attained with the
FPU running at one-half the core frequency. The FPU is
connected via an internal 64-bit coprocessor interface.
Note that clock cycles related to floating point operations
are listed in terms of FPU clocks, not integer core clocks.

The performance is optimized for single precision formats.
Most instructions have one FPU cycle throughput and four
FPU cycle latency. The FPU implements the MIPS64
multiply-add (MADD) and multiply-sub (MSUB)
instructions with intermediate rounding after the multiply
function. The result is guaranteed to be the same as
executing a MUL and an ADD instruction separately, but
the instruction latency, instruction fetch, dispatch
bandwidth, and the total number of register accesses are
improved.

IEEE denormalized input operands and results are
supported by hardware for some instructions. IEEE
denormalized results are not supported by hardware in
general, but a fast flush-to-zero mode is provided to
optimize performance. The fast flush-to-zero mode is
enabled through the FCCR register, and use of this mode is
recommended for best performance when denormalized
results are generated.

The FPU has a separate pipeline for floating point
instruction execution. This pipeline operates in parallel
with the integer core pipeline and does not stall when the
integer pipeline stalls. This allows long-running FPU
operations, such as divide or square root, to be partially
masked by system stalls and/or other integer unit
instructions. Arithmetic instructions are always dispatched
and completed in order, but loads and stores can complete
out of order. The exception model is ‘precise’ at all times.
The FPU is also denoted as “Coprocessor 1”.

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:

• Decode, register read and unpack (FR stage)

• Multiply tree - double pumped for double (M1 stage)

• Multiply complete (M2 stage)

• Addition first step (A1 stage)

• Addition second and final step (A2 stage)

• Packing to IEEE format (FP stage)

• Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the
result of an operation to be forwarded directly to the
instruction that needs it without having to write the result
to the FPU register and then read it back.
6 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 3 shows the FPU pipeline.

Figure 3 FPU Pipeline

FPU Instruction Latencies and Repeat Rates

Table 1 contains the floating point instruction latencies and
repeat rates for the 24KEf core. In this table ‘Latency’
refers to the number of FPU cycles necessary for the first
instruction to produce the result needed by the second
instruction. The ‘Repeat Rate’ refers to the maximum rate
at which an instruction can be executed per FPU cycle

FPU Control Registers

The FPU contains a number of control registers, listed in
Table 2

MIPS16e™ Application Specific Extension

The 24KEf core includes support for the MIPS16e ASE.
This ASE improves code density through the use of 16-bit
encoding of many MIPS32 instructions plus some
MIPS16e-specific instructions. PC relative loads allow
quick access to constants. Save/Restore macro instructions
provide for single instruction stack frame setup/teardown
for efficient subroutine entry/exit.

Table 1 24KEf™ Core FPU Latency and Repeat Rate

Opcode*

Latency
(FPU

cycles)

Repeat
Rate
(FPU

cycles)

ABS.[S,D], NEG.[S,D],
ADD.[S,D], SUB.[S,D],
C.cond.[S,D], MUL.S

4 1

MADD.S, MSUB.S, NMADD.S,
NMSUB.S, CABS.cond.[S,D]

4 1

CVT.D.S, CVT.PS.PW,
CVT.[S,D].[W,L]

4 1

CVT.S.D, CVT.[W,L].[S,D],
CEIL.[W,L].[S,D],
FLOOR.[W,L].[S,D],
ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]

4 1

MOV.[S,D], MOVF.[S,D],
MOVN.[S,D], MOVT.[S,D],
MOVZ.[S,D]

4 1

MUL.D 5 2

MADD.D, MSUB.D, NMADD.D,
NMSUB.D

5 2

RECIP.S 13 10

RECIP.D 26 21

RSQRT.S 17 14

RSQRT.D 36 31

* Format: S = Single, D = Double, W = Word, L = Longword

FR M1 M2 A1 A2 FP FWFPU Pipeline

Bypass

Bypass

Bypass

FPU Clock

DIV.S, SQRT.S 17 14

DIV.D, SQRT.D 32 29

MTC1, DMTC1, LWC1, LDC1,
LDXC1, LUXC1, LWXC1

4 1

MFC1, DMFC1, SWC1, SDC1,
SDXC1, SUXC1, SWXC1

1 1

Table 2 Coprocessor 1 Registers in Numerical Order

Register
Number

Register
Name Function

0 FIR
Floating Point Implementation
Register. Identifies the capabilities
of the floating point unit.

25 FCCR
Floating Point Condition Codes
Register. Alternate way of reading
the FP condition codes in the FCSR.

26 FEXR

Floating Point Exceptions Register.
Alternate way of reading the
exception condition codes in the
FCSR.

28 FENR
Floating Point Enables Register.
Alternate way of reading the
Enables field in the FCSR.

31 FCSR
Floating Point Control and Status
Register.

Table 1 24KEf™ Core FPU Latency and Repeat Rate

Opcode*

Latency
(FPU

cycles)

Repeat
Rate
(FPU

cycles)

* Format: S = Single, D = Double, W = Word, L = Longword
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Multiply/Divide Unit (MDU)

The 24KEf core includes a multiply/divide unit (MDU)
that contains a separate pipeline for integer multiply and
divide operations. This pipeline operates in parallel with
the integer unit pipeline and does not stall when the integer
pipeline stalls. This allows any long-running MDU
operations to be partially masked by system stalls and/or
other integer unit instructions.

The MDU consists of a pipelined 32x32 multiplier, result/
accumulation registers (HI and LO), a divide state machine,
and the necessary multiplexers and control logic.

The MDU supports execution of one multiply or multiply
accumulate operation every clock cycle.

Divide operations are implemented with a simple 1 bit per
clock iterative algorithm. An early-in detection checks the
sign extension of the dividend (rs) operand. If rs is 8 bits
wide, 23 iterations are skipped. For a 16-bit-wide rs, 15
iterations are skipped, and for a 24-bit-wide rs, 7 iterations
are skipped. Any attempt to issue a subsequent MDU
instruction while a divide is still active causes a pipeline
stall until the divide operation is completed.

Table 3 lists the latencies (number of cycles until a result is
available) and repeat rates (peak issue rate of cycles until
the operation can be reissued) for the 24KEf core multiply
and divide instructions. The approximate latency and
repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, refer
to Chapter 2 of the MIPS32 24KE Processor Core Family
Software User’s Manual.

The MIPS architecture defines that the result of a multiply
or divide operation be placed in the HI and LO registers.
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to the
general-purpose register file.

In addition to the HI/LO targeted operations, the MIPS32
architecture also defines a multiply instruction, MUL,
which places the least significant results in the primary
register file instead of the HI/LO register pair.

Two other instructions, multiply-add (MADD) and
multiply-subtract (MSUB), are used to perform the
multiply-accumulate and multiply-subtract operations. The
MADD instruction multiplies two numbers and then adds
the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI and
LO registers. The MADD and MSUB operations are
commonly used in DSP algorithms.

The MDU also implements various shift instructions
operating on the HI/LO register and multiply instructions
as defined in the DSP ASE. It supports all the data types
required for this purpose and includes three extra HI/LO
registers as defined by the ASE. The MDU also allows the
CorExtend interface to access these HI/LO registers
(24KEf Pro™ core only).

Table 4 lists the latencies and repeat rates for the DSP
multiply and dot-product operations. The approximate
latencies and repeat rates are listed in terms of pipeline
clocks. For a more detailed discussion of latencies and
repeat rates, refer to the MIPS32 24KEf Processor Core
Family Software User’s Manual.

Table 4 24KEf™ Core DSP-related Latencies and Repeat
Rates

Table 3 24KEf™ Core Integer Multiply/Divide Unit
Latencies and Repeat Rates

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

32 bits 5 1

MUL 32 bits 5 11

DIV/DIVU

8 bits 12/14 12/14

16 bits 20/22 20/22

24 bits 28/30 28/30

32 bits 36/38 36/38

1.If there is no data dependency, a MUL can be issued every cycle.

Opcode Latency Repeat Rate

Multiply and dot-product
without saturation after
accumulation

5 1

Multiply and dot-product
with saturation after
accumulation

5 2

Multiply without
accumulation

5 1
8 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostic
capability, the operating modes (kernel, user, supervisor,
and debug), and whether interrupts are enabled or disabled.
Configuration information, such as cache size and
associativity, presence of features like MIPS16e or floating
point unit, is also available by accessing the CP0 registers,
listed in Table 5.

Table 5 Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name Function

0 Index3 Index into the TLB array.

1 Random3 Randomly generated index into
the TLB array.

2 EntryLo03
Low-order portion of the TLB
entry for even-numbered virtual
pages.

3 EntryLo13
Low-order portion of the TLB
entry for odd-numbered virtual
pages.

4 Context1
Pointer to page table entry in
memory.

5 PageMask3 Control for variable page sizes in
TLB entries.

6 Wired3 Controls the number of fixed
(“wired”) TLB entries.

7 HWREna
Enables access via the RDHWR
instruction to selected hardware
registers.

8 BadVAddr1 Reports the address for the most
recent address-related exception.

9 Count1 Processor cycle count.

10 EntryHi3
High-order portion of the TLB
entry.

11 Compare1 Timer interrupt control.

12 Status1 Processor status and control.

12 IntCtl1
Interrupt system status and
control.

12 SRSCtl1
Shadow register set status and
control.

12 SRSMap1 Provides mapping from vectored
interrupt to a shadow set.

13 Cause1 Cause of last general exception.

14 EPC1 Program counter at last exception.

15 PRId
Processor identification and
revision.

15 EBASE Exception vector base register.

16 Config Configuration register.

16 Config1 Configuration register 1.

16 Config2 Configuration register 2.

16 Config3 Configuration register 3.

16 Config7 Configuration register 7.

17 Reserved Reserved in the 24KEf core.

18 WatchLo1 Low-order watchpoint address.

19 WatchHi1 High-order watchpoint address.

20-22 Reserved Reserved in the 24KEf core.

23 Debug2 Debug control and exception
status.

23
Trace
Control2

PC/Data trace control register.

23
Trace
Control22 Additional PC/Data trace control.

23
User Trace
Data2 User Trace control register.

23 TraceBPC2 Trace breakpoint control.

24 DEPC2 Program counter at last debug
exception.

25 PerfCount
Performance counters and
associated control.

26 ErrCtl
Used for software testing of cache
arrays.

27 CacheErr Cache parity error interface.

28
TagLo/
DataLo

Low-order portion of cache tag
interface.

29 DataHi
Hi-order portion of cache tag
interface.

Table 5 Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name Function
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 9

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a
variety of sources, including boundary cases in data,
external events, or program errors. Table 6 shows the
exception types in order of priority.

30 ErrorEPC1 Program counter at last error.

31 DESAVE2 Debug handler scratchpad
register.

1. Registers used in exception processing.

2. Registers used during debug.

3. Registers used in memory management.

Table 6 24KEf™ Core Exception Types

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT

EJTAG Debug Interrupt. Caused by the
assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in
the ECR register.

DDBLImpr/
DDBSImpr

Debug Data Break Load/Store
Imprecise

NMI Assertion of SI_NMI signal.

Interrupt
Assertion of unmasked hardware or
software interrupt signal.

Deferred Watch
Deferred Watch (unmasked by K|DM-
>!(K|DM) transition).

DIB
EJTAG debug hardware instruction
break matched.

WATCH
A reference to an address in one of the
watch registers (fetch).

AdEL
Fetch address alignment error.

Fetch reference to protected address.

TLBL Fetch TLB miss.

TLBL Fetch TLB hit to page with V=0.

I Cache Error Instruction cache parity error

IBE Instruction fetch bus error.

Table 5 Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name Function

DBp
EJTAG Breakpoint (execution of
SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU
Execution of a coprocessor instruction
for a coprocessor that is not enabled.

CEU
Execution of a CorExtend instruction
when CorExtend is not enabled.

DSPDis DSP ASE State Disabled.

RI Execution of a Reserved Instruction.

FPE Floating Point Exception

C2E Coprocessor2 Exception

IS1 Implementation specific Coprocessor2
exception

Ov
Execution of an arithmetic instruction
that overflowed.

Tr
Execution of a trap (when trap
condition is true).

Machine Check
TLB write that conflicts with an
existing entry.

DDBL / DDBS
EJTAG Data Address Break (address
only).

WATCH
A reference to an address in one of the
watch registers (data).

AdEL
Load address alignment error.

Load reference to protected address.

AdES
Store address alignment error.

Store to protected address.

TLBL Load TLB miss.

TLBL Load TLB hit to page with V=0.

TLBS Store TLB miss.

TLBS Store TLB hit to page with V=0.

TLB Mod Store to TLB page with D=0.

D Cache Error Data cache parity error - imprecise

DBE Load or store bus error - imprecise

Table 6 24KEf™ Core Exception Types (Continued)

Exception Description
10 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Interrupt Handling

The 24KEf core includes support for six hardware interrupt
pins, two software interrupts, a timer interrupt, and a
performance counter interrupt. These interrupts can be
used in any of three interrupt modes, as defined by Release
2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated
to that interrupt, and to assign a GPR shadow set for
use during interrupt processing. The presence of this
mode is denoted by the VInt bit in the Config3 register.
This mode is architecturally optional; but it is always
present on the 24KEf core, so the VInt bit will always
read as a 1 for the 24KEf core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. This
presence of this mode denoted by the VEIC bit in the
Config3 register. Again, this mode is architecturally
optional. On the 24KEf core, the VEIC bit is set
externally by the static input, SI_EICPresent, to allow
system logic to indicate the presence of an external
interrupt controller.

The reset state of the processor is to interrupt compatibility
mode such that a processor supporting Release 2 of the
Architecture, like the 24KEf core, is fully compatible with
implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the
optional shadow registers to specify which shadow set
should be used upon entry to a particular vector. The
shadow registers further improve interrupt latency by
avoiding the need to save context when invoking an
interrupt handler.

GPR Shadow Registers

Release 2 of the MIPS32 Architecture optionally removes
the need to save and restore GPRs on entry to high priority
interrupts or exceptions, and to provide specified processor
modes with the same capability. This is done by
introducing multiple copies of the GPRs, called shadow
sets, and allowing privileged software to associate a
shadow set with entry to kernel mode via an interrupt
vector or exception. The normal GPRs are logically
considered shadow set zero.

The number of GPR shadow sets is a build-time option on
the 24KEf core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core allows one
(the normal GPRs), two, or four shadow sets. The highest
number actually implemented is indicated by the
SRSCtlHSS field. If this field is zero, only the normal GPRs
are implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode
via an interrupt or exception. Once a shadow set is bound
to a kernel mode entry condition, reference to GPRs work
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged
software may need to reference all GPRs in the register file,
even specific shadow registers that are not visible in the
current mode. The RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field of the SRSCtl
register provides the number of the current shadow register
set, and the PSS field of the SRSCtl register provides the
number of the previous shadow register set (that which was
current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding
of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC
interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller,
and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a
shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value
of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an
ERET, the value of SRSCtlPSS is copied back into
SRSCtlCSS to restore the shadow set of the mode to which
control returns.

Modes of Operation

The 24KEf core supports four modes of operation: user
mode, supervisor mode, kernel mode, and debug mode.
User mode is most often used for application programs.
Supervisor mode gives an intermediate privilege level with
access to the ksseg address space. Supervisor mode is not
supported with the fixed mapping MMU. Kernel mode is
typically used for handling exceptions and operating
system kernel functions, including CP0 management and I/
O device accesses. An additional Debug mode is used
during system bring-up and software development. Refer to
"EJTAG Debug Support" on page 25 for more information
on debug mode.
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 11

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 4 24KEf™ Core Virtual Address Map

Memory Management Unit (MMU)

The 24KEf core contains a configurable Memory
Management Unit (MMU) that is primarily responsible for
converting virtual addresses to physical addresses and
providing attribute information for different segments of
memory.

Two types of MMUs are possible on the 24KEf core,
selectable when the core is synthesized. Software can
identify the type of MMU present by querying the MT field
of the Config register.

1. Translation Lookaside Buffer (TLB) -style MMU.
The basic TLB functionality is specified by the
MIPS32 Privileged Resource Architecture (PRA). A
TLB provides mapping and protection capability with

per-page granularity. The 24KEf implementation
allows a wide range of page sizes to be present
simultaneously.

2. Fixed Mapping Translation (FMT) -style MMU. The
FMT is much simpler and smaller than the TLB-style
MMU, and is a good choice when the full protection
and flexibility of the TLB is not needed.

Translation Lookaside Buffer (TLB)

The TLB consists of three address translation buffers:

• 16/32/64 dual-entry fully associative Joint TLB (JTLB)

• 4-entry fully associative Instruction Micro TLB (ITLB)

• 8-entry fully associative Data Micro TLB (DTLB)

When an instruction or data address is calculated, the
virtual address is compared to the contents of the
appropriate micro TLB (uTLB). If the address is not found
in the ITLB or DTLB, the JTLB is accessed. If the entry is
found in the JTLB, that entry is then written into the uTLB.
If the address is not found in the JTLB, a TLB exception is
taken.

Figure 5 shows how the ITLB, DTLB, and JTLB are
implemented in the 24KEf core.

Figure 5 Address Translation During a Cache Access

Joint TLB (JTLB)

The 24KEf core implements a fully associative JTLB
containing 16, 32, or 64-dual-entries mapping up to 128
virtual pages to their corresponding physical addresses.
The purpose of the TLB is to translate virtual addresses and
their corresponding ASIDs into a physical memory
address. The translation is performed by comparing the
upper bits of the virtual address (along with the ASID)

useg

kseg0

kseg1

ksseg

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Supervisor virtual address space

Unmapped, 512 MB

Kernel virtual address space

Uncached

Unmapped, 512 MB

Kernel virtual address space

User virtual address space

1. This space is mapped to memory in kernel mode,
 and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Mapped, 2048 MB

Mapped, 512 MB

 Mapped

Mapped

sseg

suseg
kuseg

Instruction
Address
Calculator

ITLB

DTLB
Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
TagRAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

JTLB

IVA Entry

EntryDVA
12 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

against each of the entries in the tag portion of the joint
TLB structure.

The JTLB is organized as pairs of even and odd entries
containing pages that range in size from 4 KB to 256 MB,
in factors of four, into the 4 GB physical address space. The
JTLB is organized in page pairs to minimize the overall
size. Each tag entry corresponds to two data entries: an
even page entry and an odd page entry. The highest order
virtual address bit not participating in the tag comparison is
used to determine which of the data entries is used. Since
page size can vary on a page-pair basis, the determination
of which address bits participate in the comparison and
which bit is used to make the even-odd determination is
decided dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB
dedicated to performing translations for the instruction
stream. The ITLB only maps 4 KB or 1 MB pages/
subpages. For 4 KB or 1 MB pages, the entire page is
mapped in the ITLB. If the main TLB page size is between
4 KB and 1 MB, only the current 4 KB subpage is mapped.

Similarly, for page sizes larger than 1 MB, the current 1
MB subpage is mapped.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing structure for
the ITLB. If a fetch address cannot be translated by the
ITLB, the JTLB is used to attempt to translate it in the
following clock cycle, or when available. If successful, the
translation information is copied into the ITLB for future
use. There is a minimum two cycle ITLB miss penalty.

Data TLB (DTLB)

The DTLB is a small 8-entry, fully associative TLB
dedicated to performing translations for loads and stores.
Similar to the ITLB, the DTLB only maps either 4 KB or 1
MB pages/subpages.

The DTLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing structure for
the DTLB. If a load/store address cannot be translated by
the DTLB, a lookup is done in the JTLB. If the JTLB
translation is successful, the translation information is
copied into the DTLB for future use. The DTLB miss
penalty is also two cycles.

Figure 6 32-bit Virtual Address Translation

11 0

 20 12

31

VPN Offset

3239

ASID

 8

Virtual Address with 1M (220) 4 KB pages

23 0

 8 24

Offset

39

Virtual Address with 256 (28)16 MB pages

8 bits = 256 pages

20 bits = 1M pages 12

ASID

 8

 3132

VPN

24

Virtual-to-physical
translation in TLB

Bit 31 of the virtual
address selects user and
kernel address spaces

Offset passed unchanged to
physical memory

Virtual-to-physical
translation in TLB

 TLB

 TLB

 31 0

PFN Offset

Offset passed unchanged
to physical memory

32-bit Physical Address
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 13

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by
comparing the virtual address from the processor with the
virtual addresses in the TLB; there is a match when the
virtual page number (VPN) of the address is the same as the
VPN field of the entry, and either:

• The Global (G) bit of the TLB entry is set, or

• The ASID field of the virtual address is the same as the
ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match,
a TLB miss exception is taken by the processor and
software is allowed to refill the TLB from a page table of
virtual/physical addresses in memory.

Figure 6 shows a flow diagram of the address translation
process for two different page sizes.

The top portion of Figure 6 shows a virtual address for a 4
KB page size. The width of the Offset in Figure 6 is defined
by the page size. The remaining 20 bits of the address
represent the virtual page number (VPN), and index the
1M-entry page table.

The bottom portion of Figure 6 shows the virtual address
for a 16 MB page size. The remaining 8 bits of the address
represent the VPN, and index the 256-entry page table.

In Figure 6, the virtual address is extended with an 8-bit
address space identifier (ASID), which reduces the
frequency of TLB flushes during context switches. This 8-
bit ASID contains the number assigned to that process and
is stored in the CP0 EntryHi register.

Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag portion and a data portion.
If a match is found, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the
corresponding entry in the data array of the joint TLB
(JTLB). The granularity of JTLB mappings is defined in
terms of TLB pages. The 24KEf core’s JTLB supports
pages of different sizes ranging from 4 KB to 256 MB in
factors of 4.

Table 7 shows the address bits used for even/odd bank
selection depending on page size and the relationship
between the legal values in the mask register and the
selected page size.

If no match occurs (TLB miss), an exception is taken and
software refills the TLB from the page table resident in
memory. Software can write over a selected TLB entry or
use a hardware mechanism to write into a random entry.

The 24KEf core implements a TLB write compare
mechanism to ensure that multiple TLB matches do not
occur. On the TLB write operation, the write value is
compared with all other entries in the TLB. If a match
occurs, the 24KEf core takes a machine check exception,
sets the TS bit in the CP0 Status register, and aborts the
write operation.

Compared with previous cores from MIPS Technologies,
the 24KEf core uses a more relaxed check for multiple
matches in order to avoid machine check exceptions while
flushing or initializing the TLB. On a write, all matching
entries are disabled to prevent them from matching on
future compares. A machine check is only signaled if the
entry being written has its valid bit set, the matching entry
in the TLB has its valid bit set, and the matching entry is
not the entry being written.

TLB Tag and Data Formats

Figure 7 shows the format of a TLB tag entry. The entry is
divided into the follow fields:

• Global process indicator

• Address space identifier

• Virtual page number

• Compressed page mask

Table 7 Mask and Page Size Values

Pagemask[28:13] Page Size
Even/Odd Bank

Select Bit

0000000000000000 4KB VAddr[12]

0000000000000011 16KB VAddr[14]

0000000000001111 64KB VAddr[16]

0000000000111111 256KB VAddr[18]

0000000011111111 1MB VAddr[20]

0000001111111111 4MB VAddr[22]

0000111111111111 16MB VAddr[24]

0011111111111111 64MB VAddr[26]

1111111111111111 256MB VAddr[28]
14 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Setting the global process indicator (G bit) indicates that
the entry is global to all processes and/or threads in the
system. In this case, the 8-bit address space identifier
(ASID) value is ignored since the entry is not relative to a
specific thread or process.

The ASID field can help to reduce the frequency of TLB
flushes on a context switches. The existence of the ASID
allows multiple processes to exist in both the TLB and
instruction caches. The current ASID value is stored in the
EntryHi register and is compared to the ASID value of each
entry. Figure 7 and Table 8 show the TLB tag entry format.

Figure 7 TLB Tag Entry Format

Figure 8 and Table 9 show the TLB data array entry format.

Figure 8 TLB Data Array Entry Format

Page Sizes and Replacement Algorithm To assist in controlling both the amount of mapped space
and the replacement characteristics of various memory

Table 8 TLB Tag Entry Fields

Field Name Description

G

Global Bit. When set, indicates that this
entry is global to all processes and/or
threads and thus disables inclusion of the
ASID in the comparison.

ASID[7:0]
Address Space Identifier. Identifies with
which process or thread this TLB entry is
associated.

VPN2[31:29],
VPN2[28:13]

Virtual Page Number divided by 2. This
field contains the upper bits of the virtual
page number. Because it represents a pair
of TLB pages, it is divided by 2. Bits 31:29
are always included in the TLB lookup
comparison. Bits 28:13 are included
depending on the page size.

CMASK[8:0]

Compressed page mask value. This field is
a compressed version of the page mask. It
defines the page size by masking the
appropriate VPN2 bits from being involved
comparison. It is also used to determine
which address bit is used to make the even-
odd page determination.

G ASID[7:0] VPN2[31:29] VPN2[28:11] CMASK[8:0]

918381

Table 9 TLB Data Array Entry Fields

Field Name Description

PFN[31:12]

Physical Frame Number. Defines the
upper bits of the physical address.

For page sizes larger than the 4KB, only a
subset of these bits is actually used.

C[2:0]

Cacheability. Contains an encoded value
of the cacheability attributes and
determines whether the page should be
placed in the cache or not. The field is
encoded as follows:

D

“Dirty” or write-enable bit. Indicates that
the page has been written and/or is
writable. If this bit is set, stores to the
page are permitted. If the bit is cleared,
stores to the page cause a TLB Modified
exception.

V

Valid bit. Indicates that the TLB entry,
and thus the virtual page mapping, are
valid. If this bit is set, accesses to the page
are permitted. If the bit is cleared,
accesses to the page cause a TLB Invalid
exception.

C[2:0] D V

11320

PFN[31:12]

CS[2:0] Coherency Attribute

0
Cacheable, noncoherent,
write through, no write
allocate.

1 Reserved

2 Uncached

3
Cacheable, noncoherent,
write back, write allocate

4-6 Reserved

7 Uncached Accelerated
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 15

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

regions, the 24KEf core provides two mechanisms. First,
the page size can be configured, on a per-entry basis, to
map a page size from 4 KB to 256 MB (in multiples of 4).
The CP0 PageMask register is loaded with the mapping
page size, which is then entered into the TLB when a new
entry is written. Thus, operating systems can provide
special purpose maps. For example, a typical frame buffer
might be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm
when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 24KEf core provides a
random replacement algorithm. However, the processor
also provides a mechanism where a programmable number
of mappings can be locked into the TLB via the CP0 Wired
register, thus avoiding random replacement.

Fixed Mapping Translation (FMT)

The 24KEf core optionally provides a Fixed Mapping
Translation mechanism that is smaller and simpler than the
full Translation Lookaside Buffer (TLB). Like a TLB, the
FMT performs virtual-to-physical address translation and
provides attributes for the different segments. Those
segments that are unmapped in a TLB implementation
(kseg0 and kseg1) are handled identically by the FMT.

Figure 9 shows how the FMT is implemented in the 24KEf
core.

Figure 9 Address Translation During Access

In general, the FMT also determines the cacheability of
each segment. These attributes are controlled via bits in the
Config register. Table 10 shows the encoding for the K23
(bits 30:28), KU (bits 27:25), and K0 (bits 2:0) fields of the

Config register. Table 11 shows how the cacheability of the
virtual address segments is controlled by these fields.

In a 24KEf core with FMT, no translation exceptions can be
taken, although address errors are still possible.

The FMT performs a simple translation to map from virtual
addresses to physical addresses. This mapping is shown in
Figure 10.

Instruction
Address
Calculator

FMT

Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

FMT

Table 10 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0 Cache Coherency Attribute

0
Cacheable, noncoherent, write-
through, no write-allocate

1 Reserved

2 Uncached

3
Cacheable, noncoherent, write-
back, write-allocate

4-6 Reserved

7 Uncached Accelerated

Table 11 Virtual Address Segments

Segment

Virtual
Address
Range Cacheability

useg
kuseg

0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field
(bits 27:25) of the Config
register. See Table 10 for
mapping. This segment is
always uncached when
ERL = 1.

kseg0
0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field
(bits 2:0) of the Config
register. See Table 10 for
mapping.

kseg1
0xA000_0000-
0xBFFF_FFFF

Always uncacheable.

kseg2
0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field
(bits 30:28) of the Config
register. See Table 10 for
mapping.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by the K23 field
(bits 30:28) of the Config
register. See Table 10 for
mapping.
16 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 10 FMT Memory Map (ERL=0) in the 24KEf™
Core

When ERL=1, useg and kuseg become unmapped (virtual
address is identical to the physical address) and uncached.
This behavior is the same as if there was a TLB. This
mapping is shown in Figure 11.

Figure 11 FMT Memory Map (ERL=1) in the 24KEf™
Core

Instruction Cache

The instruction cache is an on-chip memory block of 0/8/
16/32/64 KB, with 4-way associativity. Because the
instruction cache is virtually indexed, the virtual-to-
physical address translation occurs in parallel with the

cache access rather than having to wait for the physical
address translation. A tag entry holds 20 bits of physical
address, a valid bit, a lock bit, and an optional parity bit per
way. The instruction data entry holds two instructions (64
bits) per way, as well as 6 bits of pre-decode information to
speed the decode of branch and jump instructions, and 9
optional parity bits (one per data byte plus one more for the
pre-decode information). The LRU replacement bits (6b)
are stored in a separate array.

The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data
in the line fill buffer are serviced either by a bypass of that
data, or data coming from the external interface. The
instruction cache control logic controls the bypass
function.

The 24KEf core supports instruction-cache locking. Cache
locking allows critical code or data segments to be locked
into the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system
cache.

The cache-locking function is always available on all
instruction-cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

Data Cache

The data cache is an on-chip memory block of 0/8/16/32/
64 KB, with 4-way associativity. Since the data cache is
virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access. A tag
entry holds 20 bits of physical address, a valid bit, a lock
bit, and an optional parity bit per way. The data entry holds
64 bits of data per way, with optional parity per byte. There
is an additional array holding dirty bits and LRU
replacement algorithm bits (6b LRU, 4b dirty, and
optionally 4b dirty parity).

Using 4KB pages in the TLB and 32 or 64KB cache sizes
it is possible to get virtual aliasing. A single physical
address can exist in multiple cache locations if it was
accessed via different virtual addresses. For a 32KB data
cache, there is an implementation option to eliminate
virtual aliasing. If this option is not selected, or a 64KB
cache is implemented, software must take care of any
aliasing issues by using a page coloring scheme or some
other mechanism.

useg/kuseg

kseg0

kseg3

kseg2

kseg1

Virtual Address

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

useg/kuseg

kseg3

kseg2

Physical Address

0x0000_0000

0xC000_0000

0xE000_0000

0x2000_0000

kseg0/kseg1

0x4000_0000

reserved

useg/kuseg

kseg0

kseg3

kseg2

kseg1

Virtual Address

useg/kuseg

kseg3

kseg2

Physical Address

kseg0/kseg1

reserved

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x8000_0000

0x0000_0000

0xC000_0000

0xE000_0000
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 17

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

In addition to instruction-cache locking, the 24KEf core
also supports a data-cache locking mechanism identical to
the instruction cache. Critical data segments are locked into
the cache on a “per-line” basis. The locked contents can be
updated on a store hit, but will not be selected for
replacement on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE
instruction.

Cache Memory Configuration

The 24KEf core incorporates on-chip instruction and data
caches that are usually implemented from readily available
single-port synchronous SRAMs and accessed in two
cycles: one cycle for the actual SRAM read and another
cycle for the tag comparison, hit determination, and way
selection. The instruction and data caches each have their
own 64-bit data paths and can be accessed simultaneously.
Table 12 lists the 24KEf core instruction and data cache
attributes.

Cache Protocols

The 24KEf core supports the following cache protocols:

• Uncached: Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

• Write-through, no write allocate: Loads and
instruction fetches first search the cache, reading main
memory only if the desired data does not reside in the
cache. On data store operations, the cache is first
searched to see if the target address is cache resident. If
it is resident, the cache contents are updated, and main
memory is also written. If the cache look-up misses,
only main memory is written.

• Write-back, write allocate: Stores that miss in the
cache will cause a cache refill. Store data, however, is
only written to the cache. Caches lines that are written
by stores will be marked as dirty. If a dirty line is
selected for replacement, the cache line will be written
back to main memory.

• Uncached Accelerated: Like uncached, data is never
loaded into the cache. Store data can be gathered in a
write buffer before being sent out on the bus as a
bursted write. This is more efficient than sending out
individual writes as occurs in regular uncached mode.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external
interface signals. The primary interface implements the
Open Core Protocol (OCP). Additionally, the BIU includes
a write buffer.

OCP Interface

Table 13 shows the OCP Performance Report for the
24KEf core. This table lists characteristics about the core
and the specific OCP functionality that is supported.

Table 12 24KEf™ Core Instruction and Data Cache
Attributes

Parameter Instruction Data

Size
0, 8, 16, 32, or 64
KB*

0, 8, 16, 32, or 64
KB

Organization
4 way set
associative

4 way set
associative

Line Size 32 Bytes* 32 Bytes

Read Unit 64 bits* 64 bits

Write Policies N/A

write-through
without write
allocate,

write-back with
write allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line per line

*Logical size of instruction cache. Cache physically contains some
extra bits used for precoding the instruction type.

Table 13 OCP Performance Report

Core name 24KEf
18 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Core Identity

Vendor Code

Core Code

Revision Code

TBD

TBD

0x93, visible in ProcessorID field of CP0 PrID register

Visible in Revision field of PrID register

Process dependent No

Frequency range for this
core Synthesizable, so varies based on process, libraries, and implementation

Area Synthesizable, so varies based on process, libraries, and implementation

Power Estimate Synthesizable, so varies based on process, libraries, and implementation

Special reset requirements No

Number of Interfaces 1 OCP master, 2 OCP slave (DMA access for SPRAMs)

Interface Information:

• Name

• Type

OCPMasterInterface

Master

Master OCP Interface

a. Operations issued RD, WR

b. Issue rate (per OCP
cycle)

One per cycle, for all of the types listed above except for a non-standard RD (SYNC) which depends
on ack latency.

Maximum number of
operations outstanding

6 read operations. All writes are posted, so the OCP fabric determines the maximum number of
outstanding writes.

Burst support and effect on
issue rates

Fixed burst length of four 64b beats with single request per burst. Burst sequences of WRAP or XOR
supported.

High level flow control None

Number of tags supported
and use of those tags Total of 8 tags: 6 tags for outstanding RD’s, 1 tag for WR & 1 tag for SYNC

Connection ID and use of
connection information None

Use of sideband signals None

Implementation
restrictions

1. MReqInfo handled in a user defined way. 3 bits used to send cacheable attribute information or
encode type of L2 CACHE instruction, 1 bit used to signify SYNC.

2. MAddrSpace is used (2 bits) to indicate L2/L3 access.

4. Core clock is synchronous but a multiple of the OCP clock. The ratios supported are 1:1, 1:1.5, 1:2,
1:2.5, 1:3, 1:3.5, 1:4 and 1:5. A helper pulse is required by the core to transfer data from/to the OCP
interface without any hazards.

Interface Information:

• Name

• Type

OCPSlaveInterface

Slave

Slave OCP Interfaces (DMA interface to scratchpad)

Table 13 OCP Performance Report
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 19

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

 Write Buffer

The BIU contains a merging write buffer. The purpose of
this buffer is to store and combine write transactions before
issuing them to the external interface. The write buffer is
organized as four 32-byte buffers. Each buffer contains
data from a single 32-byte aligned block of memory.

Write Through

When using the write-through cache policy, the write buffer
significantly reduces the number of write transactions on
the external interface and reduces the amount of stalling in
the core due to issuance of multiple writes in a short period
of time.

Write Back

The write buffer also holds eviction data for write-back
lines. The load-store unit opportunistically pulls dirty data
from the cache and sends it to the BIU. It is gathered in the
write buffer and sent out as a bursted write.

Uncached Accelerated

For uncached accelerated references, the write buffer can
gather multiple writes together and then perform a bursted
write to increase the efficiency of the bus. Uncached
accelerated gathering is supported for word and double
word stores only.

Gathering of uncached accelerated stores will start on
cache-line aligned addresses, i.e. 32 byte aligned
addresses. Uncached accelerated word or double word
stores that do not to meet the conditions required to start
gathering will be treated like regular uncached stores.

Once an uncached accelerated store meets the requirements
needed to start gathering, a gather buffer is reserved for this
store. All subsequent uncached accelerated word or double
word stores to the same 32B region will write sequentially
into this buffer, independent of the word address associated
with these latter stores. The uncached accelerated buffer is
tagged with the address of the first store.

An uncached accelerated buffer is written to memory
(flushed) if:

1. The last word in the 32-byte entry being gathered is
written. (Implicit flush).

2. A PREF Nudge which matches the address associated
with the gather buffer (Explicit flush).

3. A SYNC instruction is executed. (Explicit flush).

4. Bits <31:5> of the address of a Load instruction match
the address associated with the gather buffer. (Implicit
flush)

5. Bits <31:5> of the address of an uncached accelerated
store do not match the address associated with the
gather buffer. Uncached accelerated store to a
different 32B region (Implicit flush)

6. An exception occurs. (Implicit flush)

a. Operations accepted RD, WR

b. Issue rate (per OCP
cycle)

One per cycle, for all of the types listed above except for a non-standard RD (SYNC) which is not
supported.

Maximum number of
operations outstanding 2 outstanding operations which includes both RD & WR.

Burst support Burst access is not supported

High level flow control Back pressure from slave on data and command accept. Slave assumes no back pressure from the
master.

Number of tags supported
and use of those tags Total of 8 tags. Any tag number can be used for read and write operation.

Connection ID and use of
connection information None

Use of sideband signals None

Implementation
restrictions The slave interface operates at the same clock ratio as that of the master OCP interface.

Table 13 OCP Performance Report
20 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

When an uncached accelerated buffer is flushed, the
address sent out on the system interface is the address
associated with the gather buffer.

Caveats:

• Any uncached loads or stores to unrelated addresses
that occur between uncached accelerated stores that are
part of a gather sequence will go out of order. They
will not enforce ordering.

• One constraint imposed on the gathering is that
doubleword stores are only allowed to write to double
word aligned locations in the buffer. For example if
uncached accelerated gathering starts with a Store
Word (SW/SWC1), it may not be followed by a Store
Double (SDC1)

• Uncached accelerated stores of the following types are
not intended to be used by software and may generate
unpredictable results:

– Byte, Half, or unaligned Stores
– Store conditionals

• In order for software to be able to run functionally
correct on implementations without uncached
accelerated stores, software should always generate
accesses starting on a cache-line aligned address,
proceed to generate correctly incremented sequential
addresses and observe the restrictions for uncached
accelerated stores.

Burst Order

The core is capable of generating burst transactions on the
OCP interface. A burst transaction is used to transfer
multiple related data items. Burst transactions on the
24KEf core always consist of a single request, followed by
four beats of data transfer.

Burst read transactions initiated by the core always contain
four 64b data transfers. In addition, the data requested is
always a 32-byte-aligned block. Burst reads are always
initiated for cacheable instruction or data reads which have
missed in the primary instruction or data cache.

The order of words within this 32-byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protocol
selected. The burst always starts with the critical word
requested by the execution unit and proceeds in either an
ascending or descending order wrapping at the end of an
aligned block.

The burst order sequence may be sequential or sub-block.
These are equivalent to WRAP and XOR as defined by the
OCP protocol. The selection is determined by the static
input pin, SI_SBlock.

Table 14 and Table 15 show the implied sequence of
address bits 3 and 4 for the two possible burst orders. Since
there is only a single request command for a burst
sequence, note that only the starting address is actually
transmitted by the core.

Burst write transactions can also occur when a full 32-byte
block is written to memory. This may occur in the case of a
cache line eviction, or when a full line has been gathered in
the write buffer. For writes, the burst sequence always starts
with an initial address of 00 on OC_MAddr[4:3], so the
write burst sequence is actually the same for sequential or
sub-block orders.

SimpleBE Mode

To aid in attaching the 24KEf core to structures which
cannot easily handle arbitrary byte enable patterns, there is
a mode that generates only “simple” byte enables. Only
byte enables representing naturally aligned byte, halfword,
word, and doubleword transactions will be generated.
Legal byte enable patterns are shown in Table 16.

Table 14 Sequential Burst Order

Starting Address
OC_MAddr[4:3]

Address Progression of
OC_MAddr[4:3]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

Table 15 Sub-block Burst Order

Starting Address
OC_MAddr[4:3]

Address Progression of
OC_MAddr[4:3]

00 00, 01, 10, 11

01 01, 00, 11, 10

10 10, 11, 00, 01

11 11, 10, 01, 00
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 21

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The only case where a read can generate “non-simple” byte
enables is on an uncached tri-byte load (LWL/LWR). In
SimpleBE mode, such reads will be converted into a word
read on the external interface.

Writes with non-simple byte enable patterns can arise when
a sequence of stores is processed by the merging write
buffer, or from uncached tri-byte stores (SWL/SWR). In
SimpleBE mode, these stores will be broken into multiple
write transactions.

Clocking

The core has 3 primary clock domains:

• Core domain - This is the main core clock domain,
controlled by the SI_ClkIn clock input.

• OCP domain - This domain controls the OCP bus
interface logic. This domain is synchronous to
SI_ClkIn, but can be run at lower frequencies. Core to
bus ratios of 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, 4:1 and 5:1 are
supported. The core does not contain an explicit OCP
input clock; all flops are actually controlled by
SI_ClkIn. To enable the core to determine the
frequency and phase relationship between the core and
OCP domains, a “helper” pulse, SI_OCPSync, is
required in the SI_ClkIn domain. SI_OCPSync is used
internally to control when to drive OCP outputs and
when to sample OCP inputs. Figure 12 illustrates the
required waveform for SI_OCPSync at the various
clock ratios. All OCP outputs are registered. All OCP
inputs except OC_SCmdAccept and OC_SDataAccept
are also registered.

• TAP domain - This is a low speed clock domain for the
EJTAG TAP controller, controlled by the EJ_TCK pin.
It is asynchronous to SI_ClkIn.

Table 16 Valid SimpleBE Byte Enable Patterns

OC_MByteEn[7:0] or
OC_MDataByteEn[7:0]

0000_0001

0000_0010

0000_0100

0000_1000

0001_0000

0010_0000

0100_0000

1000_0000

0000_0011

0000_1100

0011_0000

1100_0000

0000_1111

1111_0000

1111_1111
22 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 12 Required SI_OCPSync waveforms

Hardware Reset

Unlike previous MIPS cores, a 24KEf core only has a
single reset input. Historically, cold reset was used to reset

a PLL. In synthesizable cores without a PLL, the two inputs
were ORed together internally and then treated identically
(except for a Status bit indicating which reset was seen).

SI_ClkIn

OCP clock

SI_OCPSync

(1:1)

OCP clock

SI_OCPSync

(1:1.5)

OCP clock

SI_OCPSync

(1:2)

OCP clock

SI_OCPSync

(1:3)

OCP clock

SI_OCPSync

(1:2.5)

OCP clock

SI_OCPSync

(1:3.5)

(constant ‘1’)

OCP clock

SI_OCPSync

(1:4)

OCP clock

SI_OCPSync

(1:5)
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 23

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The 24KEf interface has removed the second reset type and
only includes the SI_Reset pin.

The SI_Reset input is used to initialize critical hardware
state. It can be asserted either synchronously or
asynchronously to the core clock, SI_ClkIn, and will trigger
a Reset exception. The reset signal is active high, and must
be asserted for a minimum of 5 SI_ClkIn cycles. The falling
edge triggers the Reset exception. The reset signal must be
asserted at power-on or whenever hardware initialization of
the core is desired.

In debug mode, EJTAG can request that a ‘soft’ reset be
masked. This request is signalled via the EJ_SRstE pin.
When this pin is deasserted, the system can choose to block
some sources of soft reset. Hard resets, such as power-on
reset or a reset switch should not be blocked by this signal.

Power Management

The 24KEf core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The
core is a static design that supports slowing or halting the
clocks, which reduces system power consumption during
idle periods.

The 24KEf core provides two mechanisms for system-level
low power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low power state.
The state of the RP bit is available externally via the SI_RP
signal. The external agent then decides whether to place the
device in a low power mode, such as reducing the system
clock frequency.

Three additional bits, StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the
user to change the power state if an exception or error
occurs while the 24KEf core is in a low power state.
Depending on what type of exception is taken, one of these
three bits will be asserted and reflected on the SI_EXL,
SI_ERL, or EJ_DebugM outputs. The external agent can
look at these signals and determine whether to leave the
low power state to service the exception.

The following 4 power-down signals are part of the system
interface and change state as the corresponding bits in the
CP0 registers are set or cleared:

• The SI_RP signal represents the state of the RP bit (27)
in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit
(1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit
(2) in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM
bit (30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is
through execution of the WAIT instruction. When the
WAIT instruction is executed, the internal clock is
suspended; however, the internal timer and some of the
input pins (SI_Int[5:0], SI_NMI, and SI_Reset) continue to
run. Once the CPU is in instruction-controlled power
management mode, any interrupt, NMI, or reset condition
causes the CPU to exit this mode and resume normal
operation.

The 24KEf core asserts the SI_Sleep signal, which is part
of the system interface, whenever the WAIT instruction is
executed. The assertion of SI_Sleep indicates that the clock
has stopped and the 24KEf core is waiting for an interrupt.

Local clock gating

A majority of the power consumed by the 24KEf core is
often in the clock tree and clocking registers. The core has
support for extensive use of local gated-clocks. Power-
conscious implementors can use these gated clocks to
significantly reduce power consumption within the core.

DSP ASE

The 24KEf core implements the DSP ASE to benefit a wide
range of DSP, Media, and DSP-like algorithms. The DSP
extension includes support for operations on fractional data
types, saturating arithmetic, and register SIMD operations.
Fractional data types Q15 and Q31 are supported. Register
SIMD operations can perform up to four simultaneous add,
subtract or shift operations and two simultaneous multiply
operations.

In addition, the extension includes some key features that
efficiently address specific problems often encountered in
DSP applications. These include, for example, support for
24 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

complex multiply, variable bit insert and extract, and
implementation and use of virtual circular buffers. The
extension also makes available three additional sets of HI-
LO accumulators to better facilitate common accumulate
functions such as filter operation and convolutions.

CorExtend™ User Defined Instruction
Extensions

The optional CorExtend User Defined Instruction (UDI)
block enables the implementation of a small number of
application-specific instructions that are tightly coupled to
the core’s integer execution unit.

The interface to the CorExtend block is similar to the
Multiply-Divide Unit, allowing non-blocking, pipelined
multi-cycle operations. A portion of the hooks into the
MDU control logic and also allows the HI/LO
accumulation registers to be used by the CorExtend block.

CorExtend instructions may operate on a general-purpose
register, immediate data specified by the instruction word,
or local state stored within the UDI block. The destination
may be a general-purpose register, HI/LO, or local UDI
state. The operation may complete in one cycle or multiple
cycles, if desired.

Coprocessor 2 interface

The 24KEf core can be configured to have an interface for
an on-chip coprocessor. The interface allows the
coprocessor to be tightly coupled to the processor core,
allowing high performance solutions, like integrating a
graphics accelerator or custom DSP.

The coprocessor interface is extensible and standardized on
MIPS cores, allowing design reuse. The 24KEf core
supports a subset of the full coprocessor interface standard:
single issue, 64 bit in-order data transfers.

The coprocessor interface is designed to ease integration
with customer IP. The interface allows high-performance
communication between the core and coprocessor. There
are no late or critical timing signals on the interface.

Data Scratchpad RAM (DSPRAM)

The 24KEf core can be configured to include an optional
Data scratchpad RAM independent of the data cache
configuration. A separate OCP slave interface allows a
DMA master to access the data scratchpad RAM.

To demonstrate use of the scratchpad capability, MIPS
provides a default design that includes one contiguous 8KB
RAM with cache like access. DSPRAM hit supersedes data
cache hit. DSPRAM is indexed by virtual address. The hit
information is based on the physical address in the base
register. DSPRAM can be mapped to either cacheable or
non-cacheable address space. A sophisticated arbitration
scheme and instruction slip in the pipe prevents
unnecessary stalls.

Only store instructions which are guaranteed to complete
and hit in the DSPRAM, arbitrate for the RAM. The DMA
access priority with respect to the core access is determined
by the input pin SI_DMA_Priority. The DSPRAM interface
supports multi-cycle access to the RAM array to
accommodate slow devices or larger memory sizes. The
interface allows addressing of DSPRAM sizes up to 1MB.
The interface also supports 64-bit wide data access and
provides a mechanism to back-stall the core pipeline.

Instruction Scratchpad RAM (ISPRAM)

The 24KEf core can be configured to include an optional
instruction scratchpad RAM independent of the instruction
cache configuration. A separate OCP slave interface allows
a DMA master to access the instruction scratchpad RAM.

To demonstrate use of the scratchpad capability, MIPS
provides a default design that includes one contiguous 8KB
RAM with cache like access. ISPRAM hit supersedes
instruction cache hit. ISPRAM is indexed by virtual
address. The hit information is based on the physical
address in the base register. ISPRAM can be mapped to
either cacheable or non-cacheable address space.

The DMA access priority with respect to the core access is
determined by the input pin SI_IDMA_Priority. The
ISPRAM interface supports multi-cycle access to the RAM
array to accommodate slow devices or larger memory sizes.
The interface allows addressing of ISPRAM sizes up to
1MB. The interface also supports 64-bit wide data access
and provides a mechanism to back-stall the core pipeline.

EJTAG Debug Support

The 24KEf core includes an Enhanced JTAG (EJTAG)
block for use in the software debug of application and
kernel code. In addition to standard user/supervisor/kernel
modes of operation, the 24KEf core provides a Debug
mode that is entered after a debug exception (derived from
a hardware breakpoint, single-step exception, etc.) is taken
and continues until a debug exception return (DERET)
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 25

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

instruction is executed. During this time, the processor
executes the debug exception handler routine.

Refer to the section called "External Interface Signals" on
page 37 for a list of EJTAG interface signals.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring
test data in and out of the 24KEf core. In addition to the
standard JTAG instructions, special instructions defined in
the EJTAG specification define what registers are selected
and how they are used.

Debug Registers

Three debug registers (DEBUG, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG register shows the cause of the debug
exception and is used for setting up single-step operations.
The DEPC, or Debug Exception Program Counter, register
holds the address on which the debug exception was taken.
This is used to resume program execution after the debug
operation finishes. Finally, the DESAVE, or Debug
Exception Save, register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed,
the system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These breakpoints stop
the normal operation of the CPU and force the system into
debug mode. There are two types of simple hardware
breakpoints implemented in the 24KEf core: Instruction
breakpoints and Data breakpoints.

During synthesis, the 24KEf core can be configured with or
without hardware breakpoints. The following breakpoint
options are supported:

• Zero or four instruction breakpoints

• Zero or two data breakpoints

Instruction breaks occur on instruction fetch operations,
and the break is set on the virtual address. Instruction
breaks can also be made on the ASID value used by the
MMU. A mask can be applied to the virtual address to set
breakpoints on a range of instructions.

Data breakpoints occur on load/store transactions.
Breakpoints are set on virtual address and ASID values,
similar to the Instruction breakpoint. Data breakpoints can
be set on a load, a store, or both. Data breakpoints can also
be set based on the value of the load/store operation.
Finally, masks can be applied to both the virtual address
and the load/store value.

MIPS Trace

The 24KEf core includes optional MIPS Trace support for
real-time tracing of instruction addresses, data addresses
and data values. The trace information is collected in an on-
chip or off-chip memory, for post-capture processing by
trace regeneration software.

On-chip trace memory may be configured in size from 0 to
8 MB; it is accessed through the existing EJTAG TAP
interface and requires no additional chip pins. Off-chip
trace memory is accessed through a special trace probe and
can be configured to use 4, 8, or 16 data pins plus a clock.

Testability

Testability for production testing of the core is supported
through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains.
ATPG test coverage can exceed 99%, depending on
standard cell libraries and configuration options.

Memory BIST

Memory BIST for the cache arrays, scratchpad memories
and on-chip trace memory is optional, but can be
implemented either through the use of integrated BIST
features provided with the core, or inserted with an
industry-standard memory BIST CAD tool.

Integrated Memory BIST

The core provides an integrated memory BIST solution for
testing the internal cache SRAMs, scratchpad RAMs and
on-chip trace RAM, using BIST controllers and logic
tightly coupled to the cache subsystem. Several parameters
associated with the integrated BIST controllers are
26 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

configurable, including the algorithm (March C+ or IFA-
13).

User-specified Memory BIST

Memory BIST can also be inserted with a CAD tool or
other user-specified method. Wrapper modules and signal
buses of configurable width are provided within the core to
facilitate this approach.

Build-Time Configuration Options

The 24KEf core allows a number of features to be
customized based on the intended application. Table 17
summarizes the key configuration options that can be
selected when the core is synthesized and implemented.

For a core that has already been built, software can
determine the value of many of these options by querying
an appropriate register field. Refer to the MIPS32 24KE
Processor Core Family Software User’s Manual for a more
complete description of these fields. The value of some
options that do not have a functional effect on the core are
not visible to software.

Table 17 Build-time Configuration Options

Option Choices Software Visibility

Integer register file sets 1, 2, or 4 SRSCtlHSS

Integer register file implementation style Flops or generator N/A

Memory Management Type TLB or FMT ConfigMT

TLB Size 16, 32, or 64 dual entries Config1MMUSize

TLB data array implementation style Flops or generator N/A

Instruction hardware breakpoints 0 or 4 DCRIB, IBSBCN

Data hardware breakpoints 0 or 2 DCRDB, DBSBCN

MIPS Trace support Present or not Config3TL

MIPS Trace memory location On-core, off-chip or both TCBCONFIGOnT,
TCBCONFIGOfT

MIPS Trace on-chip memory size 256B - 8MB TCBCONFIGSZ

MIPS Trace triggers 0 - 8 TCBCONFIGTRIG

CorExtend interface (Pro only) Present or not ConfigUDI*

FPU clock ratio relative to integer core 1:1 or 1:2 Config7FPR

Coprocessor2 interface Present or not Config1C2*

Instruction ScratchPad RAM interface Present or not ConfigISP*

Data ScratchPad RAM interface Present or not ConfigDSP*

I-cache size 0, 8, 16, 32, or 64 KB Config1IL, Config1IS

D-cache size 0, 8, 16, 32, or 64 KB Config1DL, Config1DS

D-cache hardware aliasing support Present or not (for 32KB only) Config7AR

Cache parity Present or not ErrCtlPE

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 27

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Instruction Set

The 24KEf core instruction set complies with the MIPS32
instruction set architecture. Table 18 provides a summary
of instructions implemented by the 24KEf core.

Memory BIST Integrated (March C+ or March C+ plus IFA-13),
custom, or none N/A

Clock gating Top-level, integer register file array, FPU register file
array, TLB array, fine-grain, or none N/A

Table 17 Build-time Configuration Options

Option Choices Software Visibility

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Table 18 24KEf™ Core Instruction Set

Instruction Description Function

ABS.fmt
Floating Point Absolute Value
fmt = s,d

Fd = abs(Fs)

ADD Integer Add Rd = Rs + Rt

ADD.fmt
Floating Point Add
fmt = s,d

Fd = Fs + Ft

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDIUPC
Unsigned Integer Add Immediate to PC (MIPS16
only)

Rt = PC +u Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

ASMACRO
Application Specific Macro - allows macro
sequences to be defined by implementor

(MIPS16 only)

Defined by implementor

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC1F Branch On Floating Point False
if (cc[i] == 0) then
 PC += (int)offset

BC1FL Branch On Floating Point False Likely

if (cc[i] == 0)then
 PC += (int)offset
else
 Ignore Next Instruction

BC1T Branch On Floating Point True
if(cc[i] == 1) then
 PC += (int)offset
28 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BC1TL Branch On Floating Point True Likely

if (cc[i] == 1) then
 PC += (int)offset
else
 Ignore Next Instruction

BC2F Branch On COP2 Condition False
if COP2Condition(cc) == 0
 PC += (int)offset

BC2FL Branch On COP2 Condition False Likely

if COP2Condition(cc) == 0
 PC += (int)offset
else
 Ignore Next Instruction

BC2T Branch On COP2 Condition True
if COP2Condition(cc) == 1
 PC += (int)offset

BC2TL Branch On COP2 Condition True Likely

if COP2Condition(cc) == 1
 PC += (int)offset
else
 Ignore Next Instruction

BEQ Branch On Equal
if Rs == Rt
 PC += (int)offset

BEQL Branch On Equal Likely

if Rs == Rt
 PC += (int)offset
else
 Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero
if !Rs[31]
 PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And Link
GPR[31] = PC + 8
if !Rs[31]
 PC += (int)offset

BGEZALL
Branch on Greater Than or Equal To Zero And Link
Likely

GPR[31] = PC + 8
if !Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely

if !Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BGTZ Branch on Greater Than Zero
if !Rs[31] && Rs != 0
 PC += (int)offset

BGTZL Branch on Greater Than Zero Likely

if !Rs[31] && Rs != 0
 PC += (int)offset
else
 Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero
if Rs[31] || Rs == 0
 PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely

if Rs[31] || Rs == 0
 PC += (int)offset
else
 Ignore Next Instruction

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 29

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BLTZ Branch on Less Than Zero
if Rs[31]
 PC += (int)offset

BLTZAL Branch on Less Than Zero And Link
GPR[31] = PC + 8
if Rs[31]
 PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely

GPR[31] = PC + 8
if Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely

if Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BNE Branch on Not Equal
if Rs != Rt
 PC += (int)offset

BNEL Branch on Not Equal Likely

if Rs != Rt
 PC += (int)offset
else
 Ignore Next Instruction

BREAK Breakpoint Break Exception

C.cond.fmt
Floating Point Compare
fmt = s,d

cc[i] = Fs compare_cond Ft

CACHE Cache Operation See Software User’s Manual

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point Fd = convert_and_round(Fs)

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point Fd = convert_and_round(Fs)

CFC1 Move Control Word From Floating Point Rt = FP_Control[Fs]

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, Rs]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Software User’s Manual

COP2 Coprocessor 2 Operation
See Coprocessor 2
Description

CTC1 Move Control Word To Floating Point FP_Control[Fs] = Rt

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

CVT.D.fmt
Floating Point Convert to Double Floating Point
fmt = S,W,L

Fd = convert_and_round(Fs)

CVT.D.fmt
Floating Point Convert to Double Floating Point
fmt = S,W,L

Fd = convert_and_round(Fs)

CVT.L.fmt
Floating Point Convert to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
30 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

CVT.S.fmt
Floating Point Convert to Single Floating Point
fmt = W,D,L

Fd = convert_and_round(Fs)

CVT.W.fmt
Floating Point Convert to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

DERET Return from Debug Exception
PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; StatusIE = 0

DIV Divide
LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIV.fmt
Floating Point Divide
fmt = S,D

Fd = Fs/Ft

DIVU Unsigned Divide
LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier
Stop instruction execution
until execution hazards are
cleared

EI Atomically Enable Interrupts Rt = Status; StatusIE = 1

ERET Return from Exception

if SR[2]
 PC = ErrorEPC
else
 PC = EPC
 SR[1] = 0
SR[2] = 0
LL = 0

EXT Extract Bit Field
Rt = ExtractField(Rs, pos,
size)

FLOOR.L.fmt
Floating Point Floor to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

FLOOR.W.fmt
Floating Point Floor to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

INS Insert Bit Field
Rt = InsertField(Rs, Rt,
pos, size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link
GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register
Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier
Like JALR, but also clears
execution and instruction
hazards

JALRC
Jump and Link Register Compact - do not execute
instruction in jump delay slot(MIPS16 only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 31

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JR.HB Jump Register with Hazard Barrier
Like JR, but also clears
execution and instruction
hazards

JRC
Jump Register Compact - do not execute instruction
in jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LDC1 Load Doubleword to Floating Point Ft = memory[base+offset]

LDC2 Load Doubleword to Coprocessor 2 CPR[2,Rt] = Mem[Rs+offset]

LDXC1 Load Doubleword Indexed to Floating Point Fd = memory[base+index]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word
Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LUXC1
Load Doubleword Indexed Unaligned to Floating
Point

Fd =
memory[(base+index)psize-
1..3

LW Load Word Rt = Mem[Rs+offset]

LWC1 Load Word to Floating Point Ft = memory[base+offset]

LWC2 Load Word To Coprocessor 2
CPR[2,Rt] =
(word)Mem[Rs+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

LWXC1 Load Word Indexed to Floating Point Fd = memory[base+index]

LWL Load Word Left
See Architecture Reference
Manual

LWR Load Word Right
See Architecture Reference
Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADD.fmt
Floating Point Multiply Add
fmt = S,D

Fd = Fs * Ft + Fr

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC1 Move From FPR Rt = Fs

MFHC1 Move From High Half of FPR Rt = Fs63..32

MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
32 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MFHC2 Move From High Half of Coprocessor 2 Rt = CPR[2, Rd, sel]63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOV.fmt Floating Point Move Fd = Fs

MOVF GPR Conditional Move on Floating Point False if (cc[i] == 0) then Rd = Rs

MOVF.fmt FPR Conditional Move on Floating Point False if (cc[i] == 0) then Fd = Fs

MOVN GPR Conditional Move on Not Zero
if Rt ≠ 0 then
 Rd = Rs

MOVN.fmt FPR Conditional Move on Not Zero
if Rt ≠ 0 then
 Fd = Fs

MOVT GPR Conditional Move on Floating Point True if (cc[i] == 1) then Rd = Rs

MOVT.fmt FPR Conditional Move on Floating Point True if (cc[i] == 1) then Fd = Fs

MOVZ GPR Conditional Move on Zero
if Rt = 0 then
 Rd = Rs

MOVZ.fmt FPR Conditional Move on Zero if (Rt == 0) then Fd = Fs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUB.fmt
Floating Point Multiply Subtract
fmt = S,D

Fd = Fs * Ft - Fr

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTC1 Move To FPR Fs = Rt

MTHC1 Move To High Half of FPR Fd = Rt || Fs31..0

MTC2 Move To Coprocessor 2 CPR[2, n, sel] = Rt

MTHC2 Move To High Half of Coprocessor 2
CPR[2, Rd, sel] = Rt ||
CPR[2, Rd, sel]31..0

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write
HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0

MUL.fmt
Floating Point Multiply
fmt = S,D

Fd = Fs * Ft

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NEG.fmt Floating Point Negate
fmt = S,D

Fd = neg(Fs)

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 33

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

NMADD.fmt Floating Point Negative Multiply Add
fmt = S,D

Fd = neg(Fs * Ft + Fr)

NMSUB.fmt Floating Point Negative Multiply Subtract
fmt = S,D

Fd = neg(Fs * Ft - Fr)

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch
Load Specified Line into
Cache

PREFX Prefetch Indexed
Load Specified Line into
Cache

RDHWR Read Hardware Register
Allows unprivileged access
to registers enabled by
HWREna register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RECIP.fmt
Floating Point Reciprocal Approximation
fmt = S,D

Fd = recip(Fs)

RESTORE
Restore registers and deallocate stack frame
(MIPS16 only)

See Architecture Reference
Manual

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

ROUND.L.fmt
Floating Point Round to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

ROUND.W.fmt
Floating Point Round to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

RSQRT.fmt
Floating Point Reciprocal Square Root
Approximation
fmt = S,D

Fd = rsqrt(Fs)

SAVE
Save registers and allocate stack frame (MIPS16
only)

See Architecture Reference
Manual

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word
if LL = 1
 mem[Rs+offset] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SDC1 Store Doubleword from Floating Point memory[base+offset] = Ft

SDC2 Store Doubleword from Coprocessor 2 Mem[Rs+offset] = CPR[2,Rt]

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
34 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SDXC1 Store Word Indexed from Floating Point memory[base+index] = Fs

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than

if (int)Rs < (int)Rt
 Rd = 1
else
 Rd = 0

SLTI Set on Less Than Immediate

if (int)Rs < (int)Immed
 Rt = 1
else
 Rt = 0

SLTIU Set on Less Than Immediate Unsigned

if (uns)Rs < (uns)Immed
 Rt = 1
else
 Rt = 0

SLTU Set on Less Than Unsigned

if (uns)Rs < (uns)Immed
 Rd = 1
else
 Rd = 0

SQRT.fmt
Floating Point Square Root
fmt = S,D

Fd = sqrt(Fs)

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUB.fmt
Floating Point Subtract
fmt = S,D

Fd = Fs - Ft

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SUXC1
Store Doubleword Indexed Unaligned from Floating
Point

memory[(base+index)psize-
1..3] = Fs

SW Store Word Mem[Rs+offset] = Rt

SWC1 Store Word From Floating Point Mem[Rs+offset] = Fs

SWC2 Store Word From Coprocessor 2
Mem[Rs+offset] =
CPR[2,Rt]31..0

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 35

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SWL Store Word Left
See Architecture Reference
Manual

SWR Store Word Right
See Architecture Reference
Manual

SWXC1 Store Word Indexed to Floating Point memory[base+index] = Fs

SYNC Synchronize See Software User’s Manual

SYNCI
Synchronize Caches to Make Instruction Writes
Effective

Fore D-cache writeback and
I-cache invalidate on
specified address

SYSCALL System Call SystemCallException

TEQ Trap if Equal
if Rs == Rt
 TrapException

TEQI Trap if Equal Immediate
if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal
if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate
if (int)Rs >= (int)Immed
 TrapException

TGEIU Trap if Greater Than or Equal Immediate Unsigned
if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned
if (uns)Rs >= (uns)Rt
 TrapException

TLBWI Write Indexed TLB Entry See Software Users Manual

TLBWR Write Random TLB Entry See Software Users Manual

TLBP Probe TLB for Matching Entry See Software Users Manual

TLBR Read Index for TLB Entry See Software Users Manual

TLT Trap if Less Than
if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate
if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned
if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned
if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal
if Rs != Rt
 TrapException

TNEI Trap if Not Equal Immediate
if Rs != (int)Immed
 TrapException

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point Fd = convert_and_round(Fs)

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point Fd = convert_and_round(Fs)

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function
36 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

External Interface Signals

This section describes the signal interface of the 24KEf
microprocessor core.

The pin direction key for the signal descriptions is shown
in Table 19 below.

The 24KEf core signals are listed in Table 20 below. Note
that the signals are grouped by logical function, not by
expected physical location. All signals, with the exception
of EJ_TRST_N, are active-high signals. EJ_DINT and
SI_NMI go through edge-detection logic so that only one
exception is taken each time they are asserted.

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

WSBH Word Swap Bytes Within HalfWords
Rd = Rt23..16 || Rt31..24 ||
Rt7..0 || Rt15..8

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 18 24KEf™ Core Instruction Set (Continued)

Instruction Description Function

Table 19 24KEf™ Core Signal Direction Key

Dir Description

I Input to the 24KEf core sampled on the rising edge of the appropriate CLK signal.

O
Output of the 24KEf core, unless otherwise noted, driven at the rising edge of the appropriate CLK
signal.

A Asynchronous inputs that are synchronized by the core.

S
Static input to the 24KEf core. These signals are normally tied to either power or ground and should not
change state while SI_Reset is deasserted.

SO Static output from the 24KEf core.

Table 20 24KEf™ Core Signal Descriptions

Signal Name Type Description

System Interface

Clock Signals:

SI_ClkIn I Clock Input.
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 37

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SI_OCPSync I

Signal indicating phase and frequency relationships between SI_ClkIn and the OCP clock
domain.The width of this pulse is related to an SI_ClkIn period.

Note that no direct OCP clock input is present on the core. Instead, all bus interface flops are
clocked with the high-speed core clock, and the SI_OCPSync signal is used to indicate when
inputs are sampled or outputs are enabled. The pattern for various OCP-to-core clock ratios
is shown in the table below, assuming the pattern starts from the point where the rising edges
of both clocks are aligned:

SI_OCPReSyncReq A

Request to change the clock ratio. The core will complete any pending transactions and stop
generating or accepting new transactions. When the core is ready for the clock ratio change,
SI_OCPRatioLock will be deasserted. The system can then change the ratio. Once the new
pattern on SI_OCPSync has been established, SI_OCPReSyncReq can be deasserted.

SI_OCPRatioLock O
Indicates that the core has locked onto a pattern on SI_OCPSync. Deassertion is
acknowledgement of a resync request (SI_OCPReSyncReq)

SI_ClkOut O
Reference Clock for external use. This clock signal provides a reference for deskewing any
clock insertion delay created by the internal clock buffering in the core.

Reset Signals:

SI_NMI A
Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sampled
asserted (high) one clock after being sampled deasserted, an NMI is posted to the core.

SI_Reset A Reset Signal. Causes a Reset Exception in the core.

Power Management Signals:

SI_ERL O
This signal represents the state of the ERL bit (2) in the CP0 Status register and indicates the
error level. The core asserts SI_ERL whenever a Reset, CacheError, or NMI exception is
taken.

SI_EXL O
This signal represents the state of the EXL bit (1) in the CP0 Status register and indicates
the exception level. The core asserts SI_EXL whenever any exception other than a Reset,
Cache Error, NMI, or Debug exception is taken.

SI_RP O
This signal represents the state of the RP bit (27) in the CP0 Status register. Software can
write this bit to indicate that a reduced power mode may be entered.

SI_Sleep O
This signal is asserted by the core whenever the WAIT instruction is executed. The assertion
of this signal indicates that the clock has stopped and that the core is waiting for an interrupt.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Clock Ratio Sync Pattern

1:1 111...

1:1.5 110110...

1:2 1010...

1:2.5 0101001010...

1:3 010010...

1:3.5 00100100010010...

1:4 00100010...

1:5 0001000010...
38 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Interrupt Signals:

SI_EICPresent S Indicates whether an external interrupt controller is present. Value is visible to software in
the Config3VEIC register field.

SI_EISS[3:0] I General purpose register shadow set number to be used when servicing an interrupt in EIC
interrupt mode.

SI_IAck O

Interrupt acknowledge indication for use in external interrupt controller mode. This signal
is active for a single SI_ClkIn cycle when an interrupt is taken. When the processor initiates
the interrupt exception, it loads the value of the SI_Int[5:0] pins into the CauseRIPL field
(overlaid with CauseIP7..IP2), and signals the external interrupt controller to notify it that the
current interrupt request is being serviced. This allows the controller to advance to another
pending higher-priority interrupt, if desired.

SI_Int[5:0] I/A

Active high Interrupt pins. These signals are driven by external logic and when asserted
indicate an interrupt exception to the core. The interpretation of these signals depends on the
interrupt mode in which the core is operating; the interrupt mode is selected by software.

The SI_Int signals go through synchronization logic and can be asserted asynchronously to
SI_ClkIn. In External Interrupt Controller (EIC) mode, however, the interrupt pins are
interpreted as an encoded value, so they must be asserted synchronously to SI_ClkIn to
guarantee that all bits are received by the core in a particular cycle.

The interrupt pins are level sensitive and should remain asserted until the interrupt has been
serviced.

In Release 1 Interrupt Compatibility mode:

• All 6 interrupt pins have the same priority as far as the hardware is concerned.

• Interrupts are non-vectored.

In Vectored Interrupt (VI) mode:

• The SI_Int pins are interpreted as individual hardware interrupt requests.

• Internally, the core prioritizes the hardware interrupts and chooses an interrupt vector.

In External Interrupt Controller (EIC) mode:

• An external block prioritizes its various interrupt requests and produces a vector number
of the highest priority interrupt to be serviced.

• The vector number is driven on the SI_Int pins, and is treated as a 6-bit encoded value in
the range of 0..63.

• When the core starts the interrupt exception, signaled by the assertion of SI_IAck, it
loads the value of the SI_Int[5:0] pins into the CauseRIPL field (overlaid with
CauseIP7..IP2). The interrupt controller can then signal another interrupt.

SI_IPL[5:0] O Current interrupt priority level from the CauseIPL register field, provided for use by an
external interrupt controller. This value is updated whenever SI_IAck is asserted.

SI_IPPCI[2:0] S
Indicates the SI_Int hardware interrupt pin that the performance counter interrupt pin
(SI_PCInt) is combined with external to the core. The value of this bus is visible to software
in the IntCtlIPPCI register field.

SI_IPTI[2:0] S
Indicates the SI_Int hardware interrupt pin that the timer interrupt pin (SI_TimerInt) is
combined with external to the core. The value of this bus is visible to software in the
IntCtlIPTI register field.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 39

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SI_PCInt O

Performance Counter Interrupt. Asserted when bit 31 of any of the performance counters is
set. This hardware pin represents the state of the CausePC register field

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order for the core to take a performance counter interrupt, the SI_PCInt signal needs to
be brought back into the core on one of the six SI_Int interrupt pins in a system-dependent
manner. Traditionally, this has been accomplished by muxing SI_PCInt with SI_Int[5].
Exposing SI_PCInt as an output allows more flexibility for the system designer.
Performance counter interrupts can be muxed or ORed into one of the interrupts, as desired
in a particular system. The SI_Int hardware interrupt pin with which the SI_PCInt signal is
merged is indicated via the SI_IPPCI static input pins.

For External Interrupt Controller (EIC) mode:

The SI_PCInt signal is provided to the external interrupt controller, which then prioritizes
the performance counter interrupt with all other interrupt sources, as desired. The controller
then encodes the desired interrupt value on the SI_Int pins. Since SI_Int is usually encoded,
the SI_IPPCI pins are not meaningful in EIC mode.

SI_SWInt[1:0] O Software interrupt request. These signals represent the value in the IP[1:0] field of the
Cause register. They are provided for use by an external interrupt controller.

SI_TimerInt O

Timer interrupt indication. This signal is asserted whenever the Count and Compare
registers match and is deasserted when the Compare register is written. This hardware pin
represents the value of the CauseTI register field.

Like SI_PCInt, this signal should be brought back into the core via one of the SI_Int pins.
For compatibility or vectored interrupt mode, SI_IPTI should indicate which interrupt pin it
has been merged with.

Configuration Inputs:

SI_SBlock S

Controls the ordering of double-words within a bursted read request on the OCP interface.
The value of this pin is visible in the BM field of the Config0 register.

SI_CPUNum[9:0] S

Unique identifier to specify an individual core in a multi-processor system. The hardware
value specified on these pins is available in the CPUNum field of the EBase register, so it
can be used by software to distinguish a particular processor. In a single processor system,
this value should be set to zero.

SI_Endian S

Indicates the base endianness of the core. The value of this pin is visible in the BE field of
the Config0 register.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

SI_SBlock Burst Order

0 Sequential

1 Subblock

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian
40 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SI_SimpleBE S

The state of this signal can constrain the core to only generate certain byte enables on
external interface transactions. This eases connection to some existing bus standards. The
value of this pin is visible in the SB field of the Config0 register.

SI_DMA_Priority I Force the DMA to have a higher priority

SI_IDMA_Priority I DMA request should be higher priority than core requests

SI_Ibs[3:0] O This signal reflects the state of the BS bits[3:0] in the Instruction Breakpoint Status (IBS)
register when EJTAG hardware breakpoint for instruction is implemented.

SI_Dbs[1:0] O This signal reflects the state of the BS bits[1:0] in the Data Breakpoint Status (IBS) register
when EJTAG hardware breakpoint for data is implemented.

L2 Interface: Static inputs are needed to set up the CP0 Config2 register if a Level 2 cache is present. Additional inputs are provided
for performance counters related to an L2 cache.

L2_LineSize[3:0] S

Encoded line size of the external L2 cache. The value of these pins is visible in the SL field
of the Config2 register. Note that a value of 0 indicates that no L2 cache is present.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

SI_SimpleBE Byte Enable Mode

0 All BEs allowed

1
Naturally aligned bytes,
halfwords, words, and
doublewords only

Encoding L2 Line Size (bytes)

0 No L2 cache present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 41

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

L2_Sets[3:0] S

Encoded number of L2 sets per way. The value of these pins is visible in the SS field of the
Config2 register.

L2_Assoc[3:0] S

Encoded associativity of the L2 cache. The value of these pins is visible in the SA field of
the Config2 register.

L2_PCWB I
Performance counter input. Indicates the number of L2 write backs (WB). One pulse (OCP
clock width) per L2 WB event. The count is visible in CP0 Performance Counter Register
0 Count.

L2_PCAcc I
Performance counter input. Indicates the number of L2 accesses. One pulse (OCP clock
width) per L2 access event. The count is visible in CP0 Performance Counter Register 1
Count.

L2_PCMiss I
Performance counter input. Indicates the number of L2 misses. One pulse (OCP clock
width) per L2 miss event. The count is visible in CP0 Performance Counter Register 0 and
1 Count.

L2_PCMissCy I

Performance counter input. Indicates the number of cycles the L2 is held due to misses. Note
that this is not an event unlike L2_PCWB, L2_PCAcc, or L2_PCMiss. 1 pulse (OCP clock
width) per L2 miss cycle. Also note that the count is in terms of OCP cycles and not SI_ClkIn
clock cycles. This needs to be factored in while reading this counter.

Note: the count related to this signal is not currently visible in a CP0 Performance Counter
Register.

These 4 inputs can be redefined if no L2 is present or if desired. The count will in this case
contain the number of OCP clock cycles this signal was high.

OCP Master System Interface: These signals connect to the OCP Standard Master Interface.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding L2 Sets Per Way

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved

Encoding L2 Associativity

0 Direct mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved
42 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OC_MCmd[2:0] O

OCP command bus, indicates the type of transaction requested. Only some encoding are
used and they are set in concert with the values on OC_MReqInfo and OC_MAddrSpace.
The encoding used by the 24KEf core are shown in the following table:

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding Command Mnemonic Description

0 Idle IDLE No transaction

1 Write WR Used for data write and L2 CACHE
write or invalidate

2 Read RD Used for fetch or data read or L2
CACHE reads or SYNC.

3-7 Unused - Not used on 24KEf core
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 43

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

 OC_MReqInfo[3:0] O

OCP command bus extension.

For transactions other than SYNC and CACHE, the OC_MReqInfo[2:0] field encodes the
cacheability attributes for a transaction; it uses the same encoding as the CCA field
described in Table 10 on page 16.

OC_MReqInfo[3] indicates that the transaction is due to a SYNC instruction; when this bit
is high, the lower bits [2:0] indicate an uncached CCA type.

The encoding of the OC_MReqInfo field for all transactions other than CACHE is
summarized in the following sub-table:

If the transaction is a CACHE transaction to an off-core L2/L3 cache, then the lower 3 bits
of OC_MReqInfo are identical to bits 20:18 of the CACHE opcode and indicate the type of
operation (See the MIPS32 24K Processor Core Family Software User’s Manual for details).
This encoding is shown in the sub-table below. Note that a L2/L3 CACHE transaction is
identified when one of the bits of MAddrSpace[1:0] are set to 1.

The encoding of the OC_MReqInfo field for the CACHE transaction is summarized in the
following sub-table:

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding for all transactions other than CACHE

Encoding Command Information

0 cacheable, noncoherent, WT, NWA

1 reserved

2 uncached

3 cacheable, noncoherent, WB, WA

4-6 reserved

7 uncached accelerated

8-9 reserved

10 SYNC with uncached CCA

11-15 reserved

Encoding for CACHE transaction

Encoding Command Information

0 index Writeback Invalidate/ Index Invalidate

1 index Load Tag

2 index Store Tag

3 reserved

4 hit invalidate

5 hit writeback invalidate/ hit invalidate

6 hit writeback

7-15 reserved
44 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OC_MAddrSpace[1:0] O

L2/L3 Address Space indicator. When the 24KEf core is issuing an L2 or an L3 CACHE
operation, the corresponding bit (Bit [0] for L2, and Bit [1] for L3) is asserted. It indicates
to the system that this OCP command is targeted to the address space of the L2 or L3 Cache.

The encoding of this field is summarized in the following table:

OC_MAddr[31:0] O

Physical address bus. The 3 least significant bits are statically driven to 0 but are decoded in
the read (OC_MByteEn) or write (OC_MDataByteEn) byte enable fields. When
OC_MAddrSpace[1:0] is not zero (to indicate a CACHE operation), then OC_MAddr[31:5]
carries the cache line address (or the cache line index for Indexed CACHE ops).

OC_MBurstSeq[2:0] O

Indicates type of burst sequence. The 24KEf core can only generate two possible values,
determined by the SI_SBlock static input, as shown in the following table:

OC_MTagID[2:0] O

Transaction tag identifier. The encoding of this field is determined by the BIU buffer holding
the outstanding transaction, as shown in the following table. Note: the 24KEf core assumes
a non-reordering subset of the OCP Tag semantics. For more explanation, see "OCP
Interface Transactions" on page 59.

OC_MBurstPrecise SO Indicates whether the burst length is precise. In the 24KEf core, burst lengths are always
fixed at 4 beats, so this pin is statically set to 0x1.

OC_MBurstSingleReq SO Indicates whether there is a single request for all data transfers in a burst. In the 24KEf core,
there is always a single command request so this pin is statically set to 0x1.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding Address Space

0 Normal address space

1 L2 address space

2 L3 address space

3 reserved

Encoding Burst Sequence

2 Sequential: Critical dword first, with linear wrapping for
subsequent beats.

4 Sub-block: Critical dword first, with increment/decrement for
subsequent beats

0-1,3,5-7 Unused by 24KEf core

Encoding Tag Allocation

0 From Read buffer 0

1 From Read buffer 1

2 From Read buffer 2

3 From Read buffer 3

4 From Fetch buffer 0

5 From Fetch buffer 1

6 SYNC

7 WR, CACHE-RD, CACHE-WR
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 45

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OC_MBurstLength[2:0] O

Number of 64b data transfers. Only two values are possible in the 24KEf core.

OC_MByteEn[7:0] O

Byte enables for reads. Includes data alignment, endianness and address. The correlation of
each bit in the OC_MByteEn field to the returned read data bytes is shown in the following
table:

OC_MData[63:0] O Write data bus from the 24KEf core.

OC_MDataByteEn[7:0] O

Byte enables for writes. Includes data alignment, endianness and address. The correlation of
each bit in the OC_MDataByteEn field to the write data bytes is shown in the following
table. Note that the 24KEf core does not use OC_MByteEn for transferring byte enables
during writes as some other OCP masters do.

OC_MDataValid O Valid write data on OC_MData bus.

OC_MDataTagID[2:0] O Write data tag identifier (for out of order returns). Per the encoding for OC_MTagID, the
only valid value in the 24KEf core is 0x7.

OC_MDataLast O Last valid data in a write burst.

OC_MReset_n O Active low output that indicates that the core is in reset. Part of the OCP master interface,
but also indicates that the OCP slave interfaces for SPRAM DMA are in reset.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding Number of Transfers

1 1, single transfer

4 4-beat burst

others Unused by 24KEf core

OC_MByteEn
signal

Requested byte to be returned on OC_SData bus

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]

[4] [39:32]

[5] [47:40]

[6] [55:48]

[7] [63:56]

OC_MDataByteEn
signal

Valid write data byte on OC_MData bus

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]

[4] [39:32]

[5] [47:40]

[6] [55:48]

[7] [63:56]
46 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OC_SData[63:0] I Returned read data to core.

OC_STagID[2:0] I Return transaction tag ID. See OC_MTagID for encoding.

OC_SResp[1:0] I

Valid response from system controller. The encoding recognized by the 24KEf core are
shown in the following table

OC_SRespLast I Marks last data in read burst.

OC_SCmdAccept I System controller notifies the 24KEf core that the command is accepted.

OC_SDataAccept I System Controller notifies the 24KEf core that the write data is accepted.

CorExtend/MDU Interface: On 24KEf Pro cores, there is an external interface to a combined CorExtend and MDU block. Refer to
the MIPS32™ 24K™ Pro Series™ CorExtend™ Instruction Integrator’s Guide for more details on these signals.

Coprocessor 2 Interface

CP2_gfclk O Free running clock for coprocessor 2. Same as SI_ClkIn

CP2_gclk O Gated coprocessor 2 clock

CP2_gscanenable O Scanenable for coprocessor 2 module. This is same as gscanenable.

Dispatch: These signals are used to transfer an instruction from the 24KEf core to the COP2 coprocessor.

CP2_ir_0[31:0] O Coprocessor Instruction Word.
Valid in the cycle before CP2_as_0, CP2_ts_0 or CP2_fs_0.

CP2_irenable_0 O Enable Instruction Registering.
When deasserted, no instruction strobes will be asserted in the following cycle.

CP2_as_0 O Coprocessor 2 Arithmetic Instruction Strobe.

CP2_abusy_0 I Coprocessor 2 Arithmetic Busy.

CP2_ts_0 O Coprocessor 2 To Strobe.

CP2_tbusy_0 I To Coprocessor 2 Busy.

CP2_fs_0 O Coprocessor 2 From Strobe.

CP2_fbusy_0 I From Coprocessor 2 Busy.

CP2_endian_0 O Big Endian Byte Ordering.
Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0.

CP2_inst32_0 SO
MIPS32 Compatibility Mode - Instructions.
Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0.
Tied high in 24K.

CP2_kd_mode_0 O Kernel/Debug mode. When asserted, the processor is in kernel or debug mode.
Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding Command Mnemonic Description

0 No response NULL No response

1 Data valid / accept DVA Normal completion response

2 Reserved - Should not be used on 24KEf core

3 Response error ERR Signals bus error exception
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 47

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

To COP Data transfer: These signals are used when data is sent from the 24KEf core to the COP2 coprocessor, as part of completing
a To Coprocessor instruction.

CP2_tds_0 O Coprocessor To Data Strobe.

CP2_torder_0[2:0] SO

Coprocessor To Order.

No out-of-order data to COP2.
Forced to 000.

CP2_tordlim_0[2:0] I To Coprocessor Data Out-of-order Limit.
Being ignored.

CP2_tdata_0[63:0] O To Coprocessor Data.

From COP Data transfer: These signals are used when data is sent to the 24KEf core from the COP2 coprocessor, as part of
completing a From Coprocessor instruction.

CP2_fds_0 I Coprocessor From Data Strobe.

CP2_forder_0[2:0] I Coprocessor From Order. No out-of-order support in 24K.
Expected to be 000 in 24K.

CP2_fordlim_0[2:0] SO

From Coprocessor Data Out-of-order Limit.

No out-of-order data to COP2.
Forced to 000 in 24K.

CP2_fdata_0[63:0] I From Coprocessor Data.

COP Condition Code Check: These signals are used to report the result of a condition code check to the 24KEf core from the COP2
coprocessor. This is only used for BC2 instructions.

CP2_cccs_0 I Coprocessor Condition Code Check Strobe.

CP2_ccc_0 I

Coprocessor Condition Code Check.

When asserted, the branch should take the branch.
When deasserted, the branch should not take the branch.

Exceptions: These signals are used by the COP2 coprocessor to report exception for each instruction.

CP2_excs_0 I Coprocessor Exception Strobe.

CP2_exc_0 I Coprocessor Exception. Valid when CP2_excs_0 is asserted.

CP2_exccode_0[4:0] I

Coprocessor Exception Code. Valid when both CP2_excs_0 and CP2_exc_0 are asserted.

• 01010: RI (This will trigger RI in core pipeline.)

• 10000: Available for Coprocessor specific exception

• 10010: C2E exception.

• All others: Reserved

Nullification: These signals are used by the 24KEf core to signal nullification of each instruction to the COP2 coprocessor.

CP2_nulls_0 O Coprocessor Null Strobe.

CP2_null_0 O Nullify coprocessor instruction.

Kill: These signals are used by the 24KEf core to signal killing of each instruction to the COP2 coprocessor.

CP2_kills_0 O Coprocessor Kill Strobe.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description
48 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

CP2_kill_0[1:0] O

Kill Coprocessor Instruction.

• 00 / 01: Instruction is not killed. OK for commit.

• 10: Instruction is killed not due to CP2_exc.

• 11: Instruction is killed due to CP2_exc.

Miscellaneous COP2 signals:

CP2_reset O Coprocessor Reset. Asserted when a reset is performed by the integer pipeline.

CP2_present S COP2 Present.

CP2_idle I Coprocessor Idle. Asserted when the coprocessor logic is idle.
Enables the processor to go into sleep mode and shut down the clock.

CP2_perfcnt_event I Implementation coprocessor performance counter event.

CP2_tx32 S COP2 32-bit Transfers. When this signal is asserted, the integer unit must cause an RI
exception for 64-bit COP2 TF instructions.

Data scratchpad RAM (DSPRAM) Interface:

This set of interface signals allows the data scratchpad RAM array to be accessed independent of the data cache.

Note: In order to achieve single cycle access, the ScratchPad interface is not fully registered, unlike most other core interfaces. This
requires more careful timing considerations.

SP_gfclk O DSPRAM free running clock. This signal follow SI_ClkIn

SP_gclk O DSPRAM gated clock. This clock is shutdown when the processor is in sleep mode and top
level clock gating is enabled.

SP_greset_pre O This reset signal should be registered within the DSPRAM module before use. The
registered version of this signal follows the reset seen by rest of the core logic.

SP_gscanenable O Scanenable signal for DSPRAM module. This signal follows the gscanenable to the core.

SP_parity_en O DSPRAM parity enable

SP_sleep_req_xx O Asserted when entering sleep mode, the clock will be killed in the next cycle

SP_wait_pd_xx O A WAIT instruction pending in the pipeline

SP_tag_rd_ag O DSPRAM Tag Read Strobe. Asserted when a read on DSPRAM tag register (either base
address or size register) is performed

SP_tag_wr_ag O DSPRAM Tag Write Strobe. Asserted when a write to DSPRAM tag register (either base
address or size register) is performed

SP_tag_sel_ag O DSPRAM Tag read/write selection (0: base address register, 1: size register)

SP_tag_wdata_ag[31:11] O DSPRAM Tag write data. It is valid when SP_tag_wr_ag is asserted

SP_data_addr_ag[19:2] O Address of the SPRAM data access. This is valid during the cycle that SP_data_rd_ag or
SP_data_wr_ag is asserted.

SP_data_rd_ag O DSPRAM data read strobe.

SP_dma_rd_ag O Indication that the read to DSPRAM is from a DMA request.

SP_data_wr_ag O DSPRAM data write strobe

SP_data_wren_ag[7:0] O DSPRAM Data Write mask. This is the byte enable for the write data to SPRAM. Only valid
when SP_data_wr_ag is asserted

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 49

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SP_data_wdata_ag[63:0] O DSPRAM write data.

SP_data_wpar_ag[7:0] O Byte parity bits for write data bus (SP_data_wdata_ag)

SP_req_id_ag[2:0] O Request identification from the core to the SPRAM. This is used to track loads from
DSPRAM. It is valid the cycle SP_data_rd_ag is asserted

SP_core_reqpd_er O Asserted when a SPRAM instruction is pending. No DMA access will be issued to
DSPRAM. This signal will be ignored when SI_DMA_Priority = 1

SP_mbsp_tosp_xx[n-1:0] O User defined variable width DSPRAM BIST sideband signal to DSPRAM.

SP_sp_tombsp_xx[n-1:0] I User defined variable width DSPRAM BIST sideband signal from DSPRAM.

SP_present S Presence of SPRAM

SP_parity_present I Indicates if parity logic is implemented in the DSPRAM module

SP_perfcnt_event I Implementation specific SPRAM performance counter event

SP_ram_busy I
This is used for a non-pipelined multi-cycle SPRAM design. Asserted when the SPRAM
will not be able the take any request in the next cycle. Any access to SPRAM will be stalled
in the next cycle.

SP_busy_xx I Asserted when SPRAM is not idle. This will prevent the processor from entering the sleep
mode and disable the clock

SP_tag_rdata_xx[31:11] I DSPRAM tag read data

SP_tag_msk_xx[31:12] I

Address mask for different size SPRAM Tag comparison. When the mask bit is
one, the address bit will participate in the tag comparison. When the mask is zero,
the address bit will be excluded from tag comparison

SP_data_rdata_xx[63:0] I Data return form SPRAM read. It is valid the same cycle SP_datavld_xx is asserted. For
single cycle access, read data should be returned the cycle after SP_data_rd_ag is asserted.

SP_data_rpar_xx[7:0] I
Byte parity of SPRAM read data (SP_data_rdata_xx). It is valid the same cycle
SP_datavld_xx is asserted. For a SPRAM design where no parity is implemented, this signal
is ignored.

SP_datavld_nxt_xx I Indicates that is a valid return data from SPRAM for a read.

SP_data_id_xx[2:0] I Instruction identification associated with the data returned. This is valid the same cycle
SP_datavld_xx is asserted.

SP_dma_id_xx[2:0] I OCP TagID of a DSPRAM DMA access. It is valid the same cycle SP_dma_wr_ag or
SP_dma_rd_ag is asserted.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

SPRAM size SP_tag_msk_xx[31:12]

4KB 1111_1111_1111_1111_1111

8KB 1111_1111_1111_1111_1110

16KB 1111_1111_1111_1111_1100

32KB 1111_1111_1111_1111_1000

64KB 1111_1111_1111_1111_0000

128KB 1111_1111_1111_1110_0000

256KB 1111_1111_1111_1100_0000

512KB 1111_1111_1111_1000_0000

1MB 1111_1111_1111_0000_0000
50 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SP_dma_addr_xx[19:3] I Index of a DSPRAM DMA request. It is valid the same cycle SP_dma_rd_ag or
SP_dma_wr_ag is asserted.

SP_dma_wdata_xx[63:0] I Write data for a DMA write request. It is valid the same cycle SP_dma_wr_ag is asserted.

SP_dma_wren_xx[7:0] I Byte write enable for a DMA write request.

SP_dma_rd_xx I DSPRAM DMA read strobe

SP_dma_wr_xx I DSPRAM DMA write strobe

SP_dma_stallreq_xx I Stall request from scratch pad to processor when there is a DMA access and
SI_DMA_Priority = 1

DSPRAM External Interface (OCP Slave Interface) This set of interface signals allows a DMA device to access the optional data
scratchpad RAM.

OC_DMA_MCmd[2:0] I

OCP command bus indicating the type of transaction requested. The following are the
encoding and the transaction type supported by the slave.

OC_DMA_MTagID[2:0] I Transaction tag identifier.

OC_DMA_MAddr[31:0] I Physical address bus. This address should fall in the address range programmed in the
DSPRAM module.

OC_DMA_MByteEn[7:0] I

Byte enable for reads operation. In combination with the endianness this bus determines the
byte addressed for the read operation. The correlation of each bit in the OC_DMA_MByteEn
field to the returned read data bytes is shown in the following table:

OC_DMA_MDataTagID[2:
0] I Write data tag identifier

OC_DMA_MData[63:0] I Write data bus to the data scratchpad RAM

OC_DMA_MDataByteEn[7
:0] I Byte lane selection for write data

OC_DMA_MDataValid I Write data (OC_DMA_MData) valid indication

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding Command Mnemonic Description

0 Idle IDLE No transaction

1 Write WR Used for data write

2 Read RD Used for data read

3-7 Unused - Not used on 24KEf core

OC_DMA_MByteEn
signal

Requested byte to be returned on
OC_DMA_SData bus

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]

[4] [39:32]

[5] [47:40]

[6] [55:48]

[7] [63:56]
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 51

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OC_DMA_SResp[1:0] O Read/Write response (00=NULL, 01=VALID 11=ERR)

OC_DMA_STagID[2:0] O Return transaction tag ID.

OC_DMA_SData[63:0] O Return data read from the scratchpad RAM.

OC_DMA_SCmdAccept O

Flow control for commands (0=BUSY, 1=READY)
• The core deasserts this signal when it is not ready to accept a new command. The

master has to hold the new command till it is accepted by the core.

• The core asserts this signal when it has accepted a new command

OC_DMA_SDataAccept O

Flow control for data (0=BUSY, 1=READY)
• The core deasserts this signal when it is not ready to accept a the data driven in

OC_DMA_SData. The master has to hold the data till it is accepted by the core.

• The core asserts this signal when it has accepted the data driven in OC_DMA_SData

Instruction scratchpad RAM (ISPRAM) Interface:

This set of interface signals allows the instruction scratchpad RAM array to be accessed independent of the instruction cache.

Note: In order to achieve single cycle access, the ScratchPad interface is not fully registered, unlike most other core interfaces. This
requires more careful timing considerations

ISP_gclk O Gated global clock

ISP_gfclk O Free-running global clock

ISP_greset_pre O Global reset. Must be registered prior to use

ISP_gscanenable O Global scanenable. Use to override local clock gating during scan.

ISP_parity_en O ISPRAM parity enable - used to control whether parity errors on DMA reads are reported
or not.

ISP_wait_pd_xx O WAIT instruction has been executed and core is getting ready to go to sleep

ISP_sleep_req_xx O Entering sleep mode in the next cycle

ISP_core_reqpd_xx O There is a core access pending (stalling the DMA request)

ISP_addr_ipf[19:3] O Index for access.

ISP_tag_sel_ipf O Controls whether Size or base address register is written

ISP_rd_ipf O Read Strobe - both tag and data values are read

ISP_dma_rd_ipf O The read is a for a DMA access

ISP_tag_wr_ipf O Tag Write Strobe

ISP_tag_wdata_ipf[31:11] O Tag write data.

ISP_data_wr_ipf O Data Write Strobe

ISP_data_wdata_ipf[69:0] O Data write data (instructions + precode)

ISP_data_wpar_ipf[8:0] O Parity for write data

ISP_present I Presence of ISPRAM

ISP_parity_present I ISPRAM array has parity support

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description
52 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ISP_perfcnt_event I Implementation specific ISPRAM performance counter event

ISP_ram_busy_ I ISPRAM will not accept any request in the next cycle

ISP_busy_xx I ISPRAM is busy with request - for sleep mode.

ISP_tag_rdata_if[31:11] I Base address for SPRAM region.

ISP_tag_msk_if[19:12] I Mask for address comparison

ISP_data_rdata_is[69:0] I Read data from data port

ISP_data_rpar_is[8:0] I Parity for read data

ISP_datavld_nxt_if I Read data will be valid next cycle

ISP_dma_addr_xx[19:3] I Index of DMA access

ISP_dma_wdata_xx[63:0] I DMA write data

ISP_dma_rdreq_xx I DMA read request

ISP_dma_wrreq_xx I DMA write request

ISP_dma_stallreq_xx I DMA stall request to the core (when DMA has higher priority)

ISPRAM External Interface (OCP Slave Interface) This set of interface signals allows a DMA device to access the optional
instruction scratchpad RAM.

OC_IDMA_MCmd[2:0] I

OCP command bus indicating the type of transaction requested. The following are the
encoding and the transaction type supported by the slave.

OC_IDMA_MTagID[2:0] I Transaction tag identifier.

OC_IDMA_MAddr[31:0] I Physical address bus. This address should fall in the address range programmed in the
ISPRAM module.

OC_IDMA_MDataValid I Write data (OC_DMA_MData) valid indication

OC_IDMA_MDataTagID[2
:0] I Write data tag identifier

OC_IDMA_MData[63:0] I Write data bus to the instruction scratchpad RAM

OC_IDMA_SResp[1:0] O Read/Write response (00=NULL, 01=VALID 11=ERR)

OC_IDMA_STagID[2:0] O Return transaction tag ID.

OC_IDMA_SData[63:0] O Return data read from the scratchpad RAM.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

Encoding Command Mnemonic Description

0 Idle IDLE No transaction

1 Write WR Used for data write

2 Read RD Used for data read

3-7 Unused - Not used on 24KEf core
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 53

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OC_IDMA_SCmdAccept O

Flow control for commands (0=BUSY, 1=READY)
• The core deasserts this signal when it is not ready to accept a new command. The

master has to hold the new command till it is accepted by the core.

• The core asserts this signal when it has accepted a new command

OC_IDMA_SDataAccept O

Flow control for data (0=BUSY, 1=READY)
• The core deasserts this signal when it is not ready to accept a the data driven in

OC_IDMA_SData. The master has to hold the data till it is accepted by the core.

• The core asserts this signal when it has accepted the data driven in OC_IDMA_SData

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port.

EJ_TRST_N I
Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion of
EJ_TRST_N causes the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

EJ_TDOzstate O

Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value of EJ_TDO

IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state core
output, the 24KEf core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

EJ_DINTsup S
Value of DINTsup for the Implementation register. When high, this signal indicates that the
EJTAG probe can use the DINT signal to interrupt the processor.

EJ_DINT A
Debug exception request when this signal is asserted one clock period after being deasserted
in the previous clock period. The request is cleared when debug mode is entered. Requests
when in debug mode are ignored.

Debug Mode Indication:

EJ_DebugM O
Asserted when the core is in Debug Mode. This can be used to bring the core out of a low
power mode. In systems with multiple processor cores, this signal can be used to
synchronize the cores when debugging.

Device ID bits:

These inputs provide an identifying number visible to the EJTAG probe.These inputs are always available for soft core customers. On
hard cores, the core “hardener” can set these inputs to their own values.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description
54 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

EJ_ManufID[10:0] S

Value of the ManufID[10:0] field in the Device ID register. As per IEEE 1149.1-1990
section 11.2, the manufacturer identity code shall be a compressed form of JEDEC standard
manufacturer’s identification code in the JEDEC Publications 106, which can be found at:
http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by discarding the parity
bit. ManufID[10:7] bits provide a binary count of the number of bytes in the JEDEC code
that contain the continuation character (0x7F). Where the number of continuations
characters exceeds 15, these 4 bits contain the modulo-16 count of the number of
continuation characters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debugging software
additional control over the system.

EJ_SRstE O
Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If this
signal is deasserted, none, some, or all soft reset sources are masked.

EJ_PerRst O
Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of the
peripheral devices in the system.

EJ_PrRst O
Processor Reset. EJTAG can assert this signal to request that the core be reset. This can be
fed into the SI_Reset signal.

TCtrace Interface

These signals enable an interface to optional off-chip trace memory. The TCtrace interface connects to the Probe Interface Block (PIB)
which in turn connects to the physical off-chip trace pins.

Note that if on-chip trace memory is used, access occurs via the EJTAG TAP interface, and use of this interface is not required.

TC_ClockRatio[2:0] O

Clock ratio. This is the clock ratio set by software in TCBCONTROLB.CR. The value will
be within the boundaries defined by TC_CRMax and TC_CRMin. The table below shows the
encoded values for clock ratio.

TC_CRMax[2:0] S
Maximum clock ratio supported. This static input sets the CRMax field of the TCBCONFIG
register. It defines the capabilities of the Probe Interface Block (PIB) module.This field
determines the minimum value of TC_ClockRatio.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

000 8:1 (Trace clock is eight times the core clock)

001 4:1 (Trace clock is four times the core clock)

010 2:1 (Trace clock is double the core clock)

011 1:1 (Trace clock is same as the core clock)

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

110 1:6 (Trace clock is one sixth the core clock)

111 1:8 (Trace clock is one eight the core clock)
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 55

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

TC_CRMin[2:0] S
Minimum clock ratio supported. This input sets the CRMin field of the TCBCONFIG
register. It defines the capabilities of the PIB module. This field determines the maximum
value of TC_ClockRatio.

TC_ProbeWidth[1:0] S

This static input will set the PW field of the TCBCONFIG register.

If this interface is not driving a PIB module, but some chip-level TCB-like module, then this
field should be set to 2’b11 (reserved value for PW).

TC_PibPresent S
Must be asserted when a PIB is attached to the TC Interface. When de-asserted (low) all the
other inputs are disregarded.

TC_TrEnable O
Trace Enable, when asserted the PIB must start running its output clock and can expect valid
data on all other outputs.

TC_Calibrate O

This signal is asserted when the Cal bit in the TCBCONTROLB register is set.

For a simple PIB which only serves one TCB, this pin can be ignored. For a multi-core
capable PIB which also uses TC_Valid and TC_Stall, the PIB must start producing the
calibration pattern when this signal is asserted.

TC_DataBits[2:0] I

This input identifies the number of bits picked up by the probe interface module in each
“cycle”.

If TC_ClockRatio indicates a clock-ratio higher than 1:2, then clock multiplication in the
Probe logic is used. The “cycle” is equal to each core clock cycle.

If TC_ClockRatio indicates a clock-ratio lower than or equal to 1:2, then “cycle” is (clock-
ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a “cycle” is equal
to core clock cycle; with a clock ratio of 1:4, a “cycle” is equal to one half of core clock
cycle.

This input controls the down-shifting amount and frequency of the trace word on
TC_Data[63:0]. The bit width and the corresponding TC_DataBits value is shown in the
table below.

This input might change as the value on TC_ClockRatio[2:0] changes.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

TC_ProbeWidth
Number physical
data pin on PIB

00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB

TC_DataBits[2:0]

Probe uses following
bits from TC_Data each

cycle

000 TC_Data[3:0]

001 TC_Data[7:0]

010 TC_Data[15:0]

011 TC_Data[31:0]

100 TC_Data[63:0]

Others Unused
56 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

TC_Valid O
Asserted when a valid new trace word is started on the TC_Data[63:0] signals.

TC_Valid is only asserted when TC_DataBits is 100.

TC_Stall I

When asserted, a new TC_Valid in the following cycle is stalled. TC_Valid is still asserted,
but the TC_Data value and TC_Valid are held static, until the cycle after TC_Stall is sampled
low.

TC_Stall is only sampled in the cycle before a new TC_Valid cycle, and only when
TC_DataBits is 100, indicating a full word of TC_Data.

TC_Data[63:0] O

Trace word data. The value on this 64-bit interface is shifted down as indicated in
TC_DataBits[2:0]. In the first cycle where a new trace word is valid on all the bits and
TC_DataBits[2:0] is 100, TC_Valid is also asserted.

The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output bus.
N is the number of bits picked up by the PIB in each core clock cycle. For clock ratios 1:2
and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, or 16).
For higher clock ratios, N is larger than the number of physical trace pins.

TC_ProbeTrigIn A
Rising edge trigger input. The source should be the Probe Trigger input. The input is
considered asynchronous; i.e., it is double registered in the core.

TC_ProbeTrigOut O
Single cycle (relative to the “cycle” defined the description of TC_DataBits) high strobe,
trigger output. The target of this trigger is intended to be the external probe’s trigger output.

TC_ChipTrigIn A
Rising edge trigger input. The source should be on-chip. The input is considered
asynchronous; i.e., it is double registered in the core.

TC_ChipTrigOut O
Single cycle (relative to core clock) high strobe, trigger output. The target of this trigger is
intended to be an on-chip unit.

Memory BIST Interface

These signals provide the interface to optional integrated or user-specified memory BIST capability for testing the SRAM arrays within
the core.

MB_invoke I Enable signal for integrated BIST controllers.

MB_ic_algorithm[7:0] S

Algorithm selection for I-Cache BIST controllers. For a core configured with IFA-13 BIST
support for the I-Cache, bit0 is used to select the BIST algorithm:

If the IFA-13 algorithm is selected, then MB_ic_algorithm[5:1] is used to determine the
retention delay.

MB_dc_algorithm[7:0] S

Algorithm selection for D-Cache BIST controllers. For a core configured with IFA-13 BIST
support for the D-Cache, bit0 is used to select the BIST algorithm:

If the IFA-13 algorithm is selected, then MB_dc_algorithm[5:1] is used to determine the
retention delay.

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

MB_ic_algorithm[0] I-Cache BIST Algorithm

0 March-C+

1 IFA-13

MB_dc_algorithm[0] D-Cache BIST Algorithm

0 March-C+

1 IFA-13
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 57

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MB_sp_algorithm[7:0] S

Algorithm selection for data scratchpad (DSPRAM) BIST controllers. For a core configured
with IFA-13 BIST support for the data scratchpad RAM, bit0 is used to select the BIST
algorithm:

If the IFA-13 algorithm is selected, then MB_sp_algorithm[5:1] is used to determine the
retention delay.

MB_isp_algorithm[7:0] S

Algorithm selection for instruction scratchpad (ISPRAM) BIST controllers. For a core
configured with IFA-13 BIST support for the data scratchpad RAM, bit0 is used to select the
BIST algorithm:

If the IFA-13 algorithm is selected, then MB_isp_algorithm[5:1] is used to determine the
retention delay.

MB_tr_algorithm[7:0] S

Algorithm selection for trace memory BIST controllers. For a core configured with IFA-13
BIST support for the trace memory, bit0 is used to select the BIST algorithm:

If the IFA-13 algorithm is selected, then MB_tr_algorithm[5:1] is used to determine the
retention delay.

MB_done O Common completion indicator for all integrated BIST sequences.

MB_dd_fail O When high, indicates that the BIST test failed on the data cache data array.

MB_dt_fail O When high, indicates that the BIST test failed on the data cache tag array.

MB_dw_fail O When high, indicates that the BIST test failed on the data cache way select array.

MB_id_fail O When high, indicates that the BIST test failed on the instruction cache data array.

MB_it_fail O When high, indicates that the BIST test failed on the instruction cache tag array.

MB_iw_fail O When high, indicates that the BIST test failed on the instruction cache way select array.

MB_sp_fail O When high, indicates that the BIST test failed on the data SPRAM array.

MB_isp_fail O When high, indicates that the BIST test failed on the instruction SPRAM array.

MB_tr_fail O When high, indicates that the BIST test failed on the trace memory array.

MB_tombt[n-1:0] I Variable width input bus available for user-specified BIST applications.

MB_frommbt[n-1:0] O Variable width output bus available for user-specified BIST applications.

Scan Test Interface

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description

MB_sp_algorithm[0] DSPRAM BIST Algorithm

0 March-C+

1 IFA-13

MB_isp_algorithm[0] DSPRAM BIST Algorithm

0 March-C+

1 IFA-13

MB_tr_algorithm[0] Trace mem BIST Algorithm

0 March-C+

1 IFA-13
58 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OCP Interface Transactions

The following sections show timing diagrams for various
OCP transactions.

The 24KEf core assumes that any agent or interconnect
between it and the target (including the target) can re-order
the transactions only if they take on the responsibility of
resolving hazards/dependencies.

In a straightforward implementation of an OCP
interconnect, the interconnect is expected not to re-order
the transactions, but maintain the tagged interface all the
way to the target. This essentially gives the transactions a
tagging semantic so that Out Of Order (OOO) transaction
return is supported. Note that the target is still responsible
for checking hazards if it returns responses OOO.

Single Read

Figure 13 shows a single read transaction, as would occur
on an uncached fetch or load. The 24KEf core starts a
request phase on clock 2 by switching the MCmd field from
IDLE to RD. Simultaneously, it presents valid values on the
address (OC_MAddr), tag (OC_MTagID), transaction info
(OC_MReqInfo), byte enables (OC_MByteEn) and burst
length (OC_MBurstLength). The slave is shown to flow
control the master for one clock then accept the request by
asserting OC_SCmdAccept in cycle 4, ending the request
phase. The slave responds to this request in cycle 7 with a
DVA on OC_SResp, valid data on OC_SData, the return tag
ID on OC_STagID and last burst indication on
OC_SRespLast. The request phase for a new transaction by
the 24KEf core can potentially start in cycle 5.

These signals provide an interface for testing the core. The use and configuration of these pins are implementation-dependent.

gscanenable I
This signal should be asserted while scanning vectors into or out of the core. The
gscanenable signal must be deasserted during normal operation and during capture clocks
in test mode.

gscanmode I
This signal should be asserted during all scan testing both while scanning and during capture
clocks. The gscanmode signal must be deasserted during normal operation.

gscanramaddr0 S
This signal controls whether the address sent to the cache SRAM is forced to 0 when
gscanmode is asserted.

gscanramwr I
This signal controls the read and write strobes to the cache SRAM when gscanmode is
asserted.

gscanin[n-1:0] I These signal(s) are the inputs to the scan chain(s).

gscanout[n-1:0] O These signal(s) are the outputs from the scan chain(s).

Table 20 24KEf™ Core Signal Descriptions (Continued)

Signal Name Type Description
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 59

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 13 Single OCP Read Transaction with flow control

Single Write

Figure 14 shows a single write transaction which could be
generated from an uncached store, or a write-through or
uncached accelerated store that does not merge. The 24KEf
core starts a request phase on clock 2 by switching the
MCmd field from IDLE to WR. At the same time it
presents valid values on the address (OC_MAddr), tag

(OC_MTagID), transaction info (OC_MReqInfo), and burst
length (OC_MBurstLength). The data part of the
transaction starts when the 24KEf core asserts the
OC_MDataValid in cycle 5 along with the data on
OC_MData and byte enables on OC_MDataByteEn. The
slave is shown to flow control the data phase (as is the
request phase) by deasserting OC_SDataAccept for one
cycle before accepting the transaction in cycle 6. A fixed
value of 0x7 is used as a TagID for all writes.

Clock #

OCP clock

OC_MCmd[2:0]

OC_MAddr[31:3]

OC_MData[63:0]

OC_SCmdAccept

OC_SData[63:0]

OC_SResp[1:0]

1 2 3 4 5 6 7 8

Valid1

R
es

po
ns

e
ph

as
e

R
eq

ue
st

 p
ha

se

OC_MReqInfo[3:0] {0,CCA}

OC_MByteEn[7:0] Valid

OC_MBurstLength[2:0] 0x1

OC_MBurstSeq[2:0]

OC_STagID[2:0]

OC_SRespLast

OC_SDataAccept

OC_MTagID[2:0] 0x0

1 Only the relevant bytes of OC_SData[63:0] carry valid data corresponding to the request signal
OC_MByteEn[7:0] at the time of request.

Next request could potentially start in this cycle

IDLE RD IDLE

A1

DVA1NULL NULL

0x0
60 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 14 Single OCP Write Transaction with flow control

Bursted Read

In Figure 15, a bursted read is shown. This is done on a
cacheable load or fetch miss to refill the cache line. The

core may be configured for either sequential or sub-block
burst order. The transaction looks similar to the single read
case except that a burst of four 64b data chunks are
transferred in the burst order specified.

Clock #

OCP clock

OC_MCmd[2:0]

OC_MAddr[31:3]

OC_MData[63:0]

OC_SCmdAccept

OC_SData[63:0]

OC_SResp[1:0]

1 2 3 4 5 6 7 8

NULL2

D
at

a
H

an
ds

ha
ke

R
eq

ue
st

 p
ha

se

OC_MReqInfo[3:0]

OC_MDataByteEn[7:0]

OC_MBurstLength[2:0] 0x1

OC_MDataValid

OC_MDataTagID[2:0]

OC_MDataLast

OC_SDataAccept

OC_MTagID[2:0] 0x7

1 Only the relevant bytes of OC_MData[63:0] carry valid data corresponding to the request signal
OC_MDataByteEn[7:0] at the time of request.
2 24KEf core does not expect a response to a posted write. (Some OCP systems generate a response to
posted writes in the same cycle as SCmdAccept).
3 The core always forces the OC_MDataTagID[2:0] signal to be 0x7 for writes.

Valid1

0x73

Valid

Next request could potentially start in this cycle

Data Phase start depends on OC_SCmdAccept

IDLE WR IDLE

A1

{0,CCA}
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 61

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figure 15 Burst OCP Read Transaction with flow control

Clock #

OCP clock

OC_MCmd[2:0]

OC_MAddr[31:3]

OC_MData[63:0]

OC_SCmdAccept

OC_SData[63:0]

OC_SResp[1:0]

1 2 3 4 5 6 7 8

A1

R
es

po
ns

e
ph

as
e

R
eq

ue
st

 p
ha

se

OC_MReqInfo[3:0] {0,CCA}

OC_MByteEn[7:0]

OC_MBurstLength[2:0] 0x4

OC_MBurstSeq[2:0]

OC_STagID[2:0]

OC_SRespLast

OC_MTagID[2:0]

1 OC_MBurstPrecise and OC_MBurstSingleReq are always forced to 0x1 by the 24KEf core since all bursts
are precise and only have a single request cycle even if a burst of data is requested.

Seq./Sub-block

OC_MBurstPrecise1

OC_MBurstSingleReq1

Next burst request could potentially start in this cycle

Both sequential and sub-block burst sequences are
supported. Here sequential is assumed

IDLE RD IDLE

0x0

0x0

D1 D2 D3 D0

DVA1 DVA2 DVA3 DVA0 NULLNULL

0xff
62 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Bursted Write

Figure 16 depicts a bursted write transaction. This would
typically be seen on a dirty cache line write-back, or when
uncached accelerated or write-through stores gather an
entire line. Bursted writes always begin at the lowest

address of the line.The transaction looks similar to the
single write case except that a burst of four 64b data chunks
are transferred. Note that the flow control signal
OC_SDataAccept can be asserted combinationally in cycle
5 as shown.

Figure 16 Burst OCP Write Transaction with flow control

Clock #

OCP clock

OC_MCmd[2:0]

OC_MAddr[31:3]

OC_MData1[63:0]

OC_SCmdAccept

OC_SResp[1:0] NULL2

D
at

a
H

an
ds

ha
ke

R
eq

ue
st

 p
ha

se OC_MReqInfo[3:0]

OC_MBurstLength[2:0]

OC_MDataValid

OC_MDataTagID[2:0]

OC_MDataLast

OC_SDataAccept

OC_MTagID[2:0]

1 The 24KEf core will only generate an aligned WRAP burst for burst writes, starting at burst address 0x0.
2 Core does not expect a response to a posted burst write. (Some OCP systems generate a response to
posted writes at the end of the burst, for example an ERR).
3Core always forces the OC_MDataTagID[2:0] signal to be 0x7 for writes.

0x73

OC_MBurstprecise

OC_MBurstSingleReq

OC_MBurstSeq[2:0]

OC_SDataAccept can be combinational just as OC_SCmdAccept!

1 2 3 4 5 6 7 8

0x7

Next request could potentially start in this cycle

IDLE WR IDLE

A1

{0,CCA}

WRAP

0x4

D1 D2 D3 D0

0xFF 0xFF 0xFF 0xFFOC_MDataByteEn[7:0]
MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 63

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SYNC Transaction

Figure 17 shows a SYNC transaction. The 24KEf core will
only generate this type of transaction for SYNC
instructions. The transaction looks very similar to a single
read (RD) transaction, along with the following properties:

1. OC_MByteEn is 0x0

2. OC_MTagID is 0x6

3. OC_MAddr[31:8] is 0x1fc000

4. OC_MAddr[7:3] carries the SYNC stype bits [10:6]

5. OC_MReqInfo is 0xA

The response is shown in clock 6 when the OC_SResp bus
is asserted by the slave, indicating a DVA (DVA is a valid
acknowledgment in OCP terminology).

Figure 17 SYNC operation as a OCP RD Transaction

Clock #

OCP clock

OC_MCmd[2:0]

OC_MAddr1[31:3]

OC_SCmdAccept

OC_SData[63:0]

OC_SResp[1:0]

1 2 3 4 5 6 7 8

NULL2

 R
es

po
ns

e
ph

as
e

R
eq

ue
st

 p
ha

se

OC_MReqInfo[3:0] 1010

OC_MBurstLength[2:0] 0x1

OC_STagID[3:0]

OC_MTagID[2:0] 0x62

1 Since 24KEf cores uses RD for SYNC’s, a conservative address (close to the MIPS boot vector) is sent
out on OC_MAddr. This is a concatenation of {0x1fc000, sync_opcode_stype[4:0]}.
2Core always forces the OC_MDataTagID[2:0] signal to be 0x6 for SYNC’s.

0x6

NULLDVA

Junk Data

OC_SRespLast

Next request could potentially start in this cycle

IDLE RD IDLE

A1
64 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02 65

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Revision History

In the left hand page margins of this document you may
find vertical change bars to note the location of significant
changes to this document since its last release. Significant
changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar,
spelling errors or similar may or may not be noted with
change bars. Change bars will be removed for changes
which are more than one revision old.

 Please note: Limitations on the authoring tools make it
difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in
the figure itself. Certain parts of this document (Instruction
set descriptions, EJTAG register definitions) are references
to Architecture specifications, and the change bars within
these sections indicate alterations since the previous
version of the relevant Architecture document.

Table 21 Revision History

Revision Date Description

00.01 January 7, 2005 • Initial version

00.02 January 19, 2005 • Updates based on feedback

01.00 April 26, 2005 • 24KE EA release updates

01.01 June 30, 2005 • General Availability

01.02 December 14, 2005

• 8KB cache support

• Clock-ratio resynchronization

• Pin changes for OCP compliance

• New scan control pin

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS
Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair
competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject
to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER
NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or
otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any
error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited
to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give
recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document,
the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, MIPS-VERIFIED, 4K, 4Kc, 4Km, 4Kp, 4KE,
4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20K, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K,
34Kc, 34Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, CorExtend,
CoreFPGA, CoreLV, EC, JALGO, Malta, MDMX, MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2,
SmartMIPS, SOC-it, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and
other countries.

All other trademarks referred to herein are the property of their respective owners.

66 MIPS32® 24KEf™ Processor Core Datasheet, Revision 01.02

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Template: D1.14, Built with tags: 2B

	24KEf™ Core Features
	Architecture Overview
	Pipeline Flow
	24KEf™ Core Logic Blocks
	Fetch Unit
	Execution Unit
	Floating Point Unit (FPU) / Coprocessor 1
	FPU Pipeline
	FPU Instruction Latencies and Repeat Rates
	FPU Control Registers

	MIPS16e™ Application Specific Extension
	Multiply/Divide Unit (MDU)
	System Control Coprocessor (CP0)
	Interrupt Handling
	GPR Shadow Registers

	Modes of Operation
	Memory Management Unit (MMU)
	Translation Lookaside Buffer (TLB)
	Joint TLB (JTLB)
	Instruction TLB (ITLB)
	Data TLB (DTLB)
	Virtual-to-Physical Address Translation
	Hits, Misses, and Multiple Matches
	TLB Tag and Data Formats
	Page Sizes and Replacement Algorithm

	Fixed Mapping Translation (FMT)
	Instruction Cache
	Data Cache
	Cache Memory Configuration
	Cache Protocols
	Bus Interface (BIU)
	OCP Interface
	Write Buffer
	Burst Order
	SimpleBE Mode

	Clocking
	Hardware Reset
	Power Management
	Register-Controlled Power Management
	Instruction-Controlled Power Management
	Local clock gating

	DSP ASE
	CorExtend™ User Defined Instruction Extensions
	Coprocessor 2 interface
	Data Scratchpad RAM (DSPRAM)
	Instruction Scratchpad RAM (ISPRAM)
	EJTAG Debug Support
	Debug Registers
	EJTAG Hardware Breakpoints
	MIPS Trace

	Testability
	Internal Scan
	Memory BIST
	Integrated Memory BIST
	User-specified Memory BIST

	Build-Time Configuration Options
	Instruction Set
	External Interface Signals
	OCP Interface Transactions
	Single Read
	Single Write
	Bursted Read
	Bursted Write
	SYNC Transaction

	Revision History

